Topics
Contents Research Articles, 291 Article(s)
A simple method for pulse contrast enhancement via self-focusing
Zaharit Refaeli, Gilad Marcus, and Yariv Shamir

Here we report on a simple-to-implement and cost-effective approach for laser pulse contrast enhancement, based on the ${\chi}^{(3)}$ nonlinear self-focusing effect. An intentionally induced and gently controlled self-focusing in a thin glass transforms the time-dependent intensity into variation in beam divergence. Followed by a spatial discriminating filter, only the strongly focused fraction traverses the setup, at the expense of efficiency. A numerical model, accounting for the pulse and material parameters via a Gaussian ABCD matrix, provides an estimate for the instantaneous beam waist and transmission efficiency, which enables us to evaluate the resulting contrast enhancement. The estimated contrast enhancement spans between 0.5 and 2.5 orders of magnitude, in conjunction with approximately 25%–90% estimated efficiency, depending on the pulse parameters. In a preliminary experiment we demonstrated the effect with 10s-μJ sub GW regime with approximately 40 $\%$ efficiency and a contrast improvement of more than or equal to 20 dB.

High Power Laser Science and Engineering
Dec. 29, 2023, Vol. 12 Issue 2 02000e18 (2024)
Generation of millijoule-level sub-5 fs violet laser pulses
Xinhua Xie, Yi Hung, Yunpei Deng, Adrian L. Cavalieri, Andrius Baltuška, and Steven L. Johnson

We demonstrate the generation, spectral broadening and post-compression of second harmonic pulses using a thin beta barium borate (BBO) crystal on a fused-silica substrate as the nonlinear interaction medium. By combining second harmonic generation in the BBO crystal with self-phase modulation in the fused-silica substrate, we efficiently generate millijoule-level broadband violet pulses from a single optical component. The second harmonic spectrum covers a range from long wave ultraviolet (down to 310 nm) to visible (up to 550 nm) with a bandwidth of 65 nm. Subsequently, we compress the second harmonic beam to a duration of 4.8 fs with a pulse energy of 0.64 mJ (5 fs with a pulse energy of 1.05 mJ) using chirped mirrors. The all-solid free-space apparatus is compact, robust and pulse energy scalable, making it highly advantageous for generating intense second harmonic pulses from near-infrared femtosecond lasers in the sub-5 fs regime.

High Power Laser Science and Engineering
Dec. 22, 2023, Vol. 12 Issue 2 02000e16 (2024)
Exploring fs-laser irradiation damage subthreshold behavior of dielectric mirrors via electrical measurements
Petrisor Gabriel Bleotu, Radu Udrea, Alice Dumitru, Olivier Uteza, Maria-Diana Mihai, Dan Gh Matei, Daniel Ursescu, Stefan Irimiciuc, and Valentin Craciun

With ultrafast laser systems reaching presently 10 PW peak power or operating at high repetition rates, research towards ensuring the long-term, trouble-free performance of all laser-exposed optical components is critical. Our work is focused on providing insight into the optical material behavior at fluences below the standardized laser-induced damage threshold (LIDT) value by implementing a simultaneous dual analysis of surface emitted particles using a Langmuir probe (LP) and the target current (TC). ${\mathrm{HfO}}_2$ and ${\mathrm{ZrO}}_2$ thin films deposited on fused silica substrates by pulsed laser deposition at various ${\mathrm{O}}_2$ pressures for defect and stoichiometry control were irradiated by Gaussian, ultrashort laser pulses (800 nm, 10 Hz, 70 fs) in a wide range of fluences. Both TC and LP collected signals were in good agreement with the existing theoretical description of laser–matter interaction at an ultrashort time scale. Our approach for an in situ LIDT monitoring system provides measurable signals for below-threshold irradiation conditions that indicate the endurance limit of the optical surfaces in the single-shot energy scanning mode. The LIDT value extracted from the LP-TC system is in line with the multipulse statistical analysis done with ISO 21254-2:2011(E). The implementation of the LP and TC as on-shot diagnostic tools for optical components will have a significant impact on the reliability of next-generation ultrafast and high-power laser systems.

High Power Laser Science and Engineering
Dec. 14, 2023, Vol. 12 Issue 2 02000e15 (2024)
High-repetition-rate and high-power efficient picosecond thin-disk regenerative amplifier
Sizhi Xu, Yubo Gao, Xing Liu, Yewang Chen, Deqin Ouyang, Junqing Zhao, Minqiu Liu, Xu Wu, Chunyu Guo, Cangtao Zhou, Qitao Lue, and Shuangchen Ruan

We present an effective approach to realize a highly efficient, high-power and chirped pulse amplification-free ultrafast ytterbium-doped yttrium aluminum garnet thin-disk regenerative amplifier pumped by a zero-phonon line 969 nm laser diode. The amplifier delivers an output power exceeding 154 W at a pulse repetition rate of 1 MHz with custom-designed 48 pump passes. The exceptional thermal management on the thin disk through high-quality bonding, efficient heat dissipation and a fully locked spectrum collectively contributes to achieving a remarkable optical-to-optical efficiency of 61% and a near-diffraction-limit beam quality with an M2 factor of 1.06. To the best of our knowledge, this represents the highest conversion efficiency reported in ultrafast thin-disk regenerative amplifiers. Furthermore, the amplifier operates at room temperature and exhibits exceptional stability, with root mean square stability of less than 0.33%. This study significantly represents advances in the field of laser amplification systems, particularly in terms of efficiency and average power. This advantageous combination of high efficiency and diffraction limitation positions the thin-disk regenerative amplifier as a promising solution for a wide range of scientific and industrial applications.

High Power Laser Science and Engineering
Dec. 15, 2023, Vol. 12 Issue 2 02000e14 (2024)
Mismatch analysis of all-fiber coherent beam combiners based on the self-imaging effect
Yuefang Yan, Yu Liu, Haoyu Zhang, Yuwei Li, Chao Guo, Qiang Shu, Wenhui Huang, Feng Jing, and Rumao Tao

All-fiber coherent beam combiners based on the self-imaging effect can achieve a near-perfect single laser beam, which can provide a promising way to overcome the power limitation of a single-fiber laser. One of the key points is combining efficiency, which is determined by various mismatches during fabrication. A theoretical model has been built, and the mismatch error is analyzed numerically for the first time. The mismatch errors have been numerically studied with the beam quality and combining efficiency being chosen as the evaluation criteria. The tolerance of each mismatch error for causing 1% loss is calculated to guide the design of the beam combiners. The simulation results are consistent with the experimental results, which show that the mismatch error of the square-core fiber is the main cause of the efficiency loss. The results can provide useful guidance for the fabrication of all-fiber coherent beam combiners.

High Power Laser Science and Engineering
Nov. 21, 2023, Vol. 12 Issue 2 02000e13 (2024)
Prospect of ultrahigh-resolution fast neutron absorption spectroscopy based on a laser plasma electron accelerator
Wen-Zhao Wang, Jie Feng, Xiao-Peng Zhang, Yao-Jun Li, Wei-Jun Zhou, Wen-Chao Yan, Guo-Qiang Zhang, Chang-Bo Fu, and Li-Ming Chen

Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However, due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficult to obtain a high-resolution absorption spectrum. Thus, we present a method of ultrahigh energy-resolution absorption spectroscopy via a high repetition rate, picosecond duration pulsed neutron source driven by a terawatt laser. The technology of single neutron count is used, which results in easily distinguishing the width of approximately 20 keV at 2 MeV and an asymmetric shape of the neutron absorption peak. The absorption spectroscopy based on a laser neutron source has one order of magnitude higher energy-resolution power than the state-of-the-art traditional neutron sources, which could be of benefit for precisely measuring nuclear structure data.

High Power Laser Science and Engineering
Nov. 30, 2023, Vol. 12 Issue 1 01000e11 (2024)
Synchronized off-harmonic probe laser with highly variable pulse duration for laser–plasma interaction experiments
J. Hornung, Y. Zobus, H. Lorenté, C. Brabetz, B. Zielbauer, and V. Bagnoud

This paper presents the development and experimental utilization of a synchronized off-harmonic laser system designed as a probe for ultra-intense laser–plasma interaction experiments. The system exhibits a novel seed-generation design, allowing for a variable pulse duration spanning over more than three orders of magnitude, from 3.45 picoseconds to 10 nanoseconds. This makes it suitable for various plasma diagnostics and visualization techniques. In a side-view configuration, the laser was employed for interferometry and streaked shadowgraphy of a laser-induced plasma while successfully suppressing the self-emission background of the laser–plasma interaction, resulting in a signal-to-self-emission ratio of 110 for this setup. These properties enable the probe to yield valuable insights into the plasma dynamics and interactions at the PHELIX facility and to be deployed at various laser facilities due to its easy-to-implement design.

High Power Laser Science and Engineering
Nov. 29, 2023, Vol. 12 Issue 1 01000e10 (2024)
Theoretical analysis of frequency modulation-to-amplitude modulation on the final optics and target of the SG II-Up laser facility
Yujia Zhang, Wei Fan, Jiangfeng Wang, Xiaochao Wang, Xinghua Lu, Dajie Huang, Shouying Xu, Yanli Zhang, Mingying Sun, Zhaoyang Jiao, Shenlei Zhou, and Xiuqing Jiang

Frequency modulation (FM)-to-amplitude modulation (AM) conversion is an important factor that affects the time–power curve of inertial confinement fusion (ICF) high-power laser facilities. This conversion can impact uniform compression and increase the risk of damage to optics. However, the dispersive grating used in the smoothing by spectral dispersion technology will introduce a temporal delay and can spatially smooth the target. The combined effect of the dispersive grating and the focusing lens is equivalent to a Gaussian low-pass filter, which is equivalent to 8 GHz bandwidth and can reduce the intensity modulation on the target to below 5% with 0.3 nm @ 3 GHz + 20 GHz spectrum phase modulation. The results play an important role in the testing and evaluating of the FM-to-AM on the final optics and the target, which is beneficial for comprehensively evaluating the load capacity of the facility and isentropic compression experiment for ICF.

High Power Laser Science and Engineering
Dec. 06, 2023, Vol. 12 Issue 1 010000e9 (2024)
A GHz chirped amplitude-modulated laser for high-contrast plasma gratings
Michael Valdman, Amir Hen, and Gilad Marcus

The generation and control of large amplitude plasma gratings and other plasma structures is of paramount importance for the realization of plasma photonics. Autoresonant excitation of such structures by means of chirped amplitude-modulated lasers has been recently discussed and analyzed theoretically. Here we discuss the parameter space for the realization of such a scheme and describe the laser system that was built towards this goal. We also expand our earlier theoretical study to account for the more realistic case of a moderately focused laser beam, instead of the simplified plane wave approximation.

High Power Laser Science and Engineering
Nov. 13, 2023, Vol. 12 Issue 1 010000e8 (2024)
Energy enhancement of laser-driven ions by radiation reaction and Breit–Wheeler pair production in the ultra-relativistic transparency regime
Shikha Bhadoria, Mattias Marklund, and Christoph H. Keitel

The impact of radiation reaction and Breit–Wheeler pair production on the acceleration of fully ionized carbon ions driven by an intense linearly polarized laser pulse has been investigated in the ultra-relativistic transparency regime. Against initial expectations, the radiation reaction and pair production at ultra-high laser intensities are found to enhance the energy gained by the ions. The electrons lose most of their transverse momentum, and the additionally produced pair plasma of Breit–Wheeler electrons and positrons co-streams in the forward direction as opposed to the existing electrons streaming at an angle above zero degree. We discuss how these observations could be explained by the changes in the phase velocity of the Buneman instability, which is known to aid ion acceleration in the breakout afterburner regime, by tapping the free energy in the relative electron and ion streams. We present evidence that these non-classical effects can further improve the highest carbon ion energies in this transparency regime.

High Power Laser Science and Engineering
Nov. 13, 2023, Vol. 12 Issue 1 010000e7 (2024)
Design, performance and application of a line-imaging velocity interferometer system for any reflector coupled with a streaked optical pyrometer system at the Shenguang-II upgrade laser facility
Dawei Yuan, Shaojun Wang, Huigang Wei, Haochen Gu, Yu Dai, Jiayong Zhong, Yutong Li, Gang Zhao, and Jie Zhang

The velocity interferometer system for any reflector (VISAR) coupled with a streaked optical pyrometer (SOP) system is used as a diagnostic tool in inertial confinement fusion (ICF) experiments involving equations of state and shock timing. To validate the process of adiabatically compressing the fuel shell through precise tuning of shocks in experimental campaigns for the double-cone ignition (DCI) scheme of ICF, a compact line-imaging VISAR with an SOP system is designed and implemented at the Shenguang-II upgrade laser facility. The temporal and spatial resolutions of the system are better than 30 ps and 7 μm, respectively. An illumination lens is used to adjust the lighting spot size matching with the target size. A polarization beam splitter and λ/4 waveplate are used to increase the transmission efficiency of our system. The VISAR and SOP work at 660 and 450 nm, respectively, to differentiate the signals from the scattered lights of the drive lasers. The VISAR can measure the shock velocity. At the same time, the SOP system can give the shock timing and relative strength. This system has been used in different DCI campaigns, where the generation and propagation processes of multi-shock are carefully diagnosed.

High Power Laser Science and Engineering
Nov. 15, 2023, Vol. 12 Issue 1 010000e6 (2024)
Digital generation of super-Gaussian perfect vortex beams via wavefront shaping with globally adaptive feedback
Rui Ma, Ke Hai Luo, Jing Song He, Wei Li Zhang, Dian Yuan Fan, Anderson S. L. Gomes, and Jun Liu

High-intensity vortex beams with tunable topological charges and low coherence are highly demanded in applications such as inertial confinement fusion (ICF) and optical communication. However, traditional optical vortices featuring nonuniform intensity distributions are dramatically restricted in application scenarios that require a high-intensity vortex beam owing to their ineffective amplification resulting from the intensity-dependent nonlinear effect. Here, a low-coherence perfect vortex beam (PVB) with a topological charge as high as 140 is realized based on the super-pixel wavefront-shaping technique. More importantly, a globally adaptive feedback algorithm (GAFA) is proposed to efficiently suppress the original intensity fluctuation and achieve a flat-top PVB with dramatically reduced beam speckle contrast. The GAFA-based flat-top PVB generation method can pave the way for high-intensity vortex beam generation, which is crucial for potential applications in ICF, laser processing, optical communication and optical trapping.

High Power Laser Science and Engineering
Nov. 29, 2023, Vol. 12 Issue 1 010000e5 (2024)
Continuous gradient fusion class activation mapping: segmentation of laser-induced damage on large-aperture optics in dark-field images
Yueyue Han, Yingyan Huang, Hangcheng Dong, Fengdong Chen, Fa Zeng, Zhitao Peng, Qihua Zhu, and Guodong Liu

Segmenting dark-field images of laser-induced damage on large-aperture optics in high-power laser facilities is challenged by complicated damage morphology, uneven illumination and stray light interference. Fully supervised semantic segmentation algorithms have achieved state-of-the-art performance but rely on a large number of pixel-level labels, which are time-consuming and labor-consuming to produce. LayerCAM, an advanced weakly supervised semantic segmentation algorithm, can generate pixel-accurate results using only image-level labels, but its scattered and partially underactivated class activation regions degrade segmentation performance. In this paper, we propose a weakly supervised semantic segmentation method, continuous gradient class activation mapping (CAM) and its nonlinear multiscale fusion (continuous gradient fusion CAM). The method redesigns backpropagating gradients and nonlinearly activates multiscale fused heatmaps to generate more fine-grained class activation maps with an appropriate activation degree for different damage site sizes. Experiments on our dataset show that the proposed method can achieve segmentation performance comparable to that of fully supervised algorithms.

High Power Laser Science and Engineering
Nov. 20, 2023, Vol. 12 Issue 1 010000e4 (2024)
Specifications and control of spatial frequency errors of components in two-beam laser static holographic exposure for pulse compression grating fabrication
Chen Hu, Songlin Wan, Guochang Jiang, Haojin Gu, Yibin Zhang, Yunxia Jin, Shijie Liu, Chengqiang Zhao, Hongchao Cao, Chaoyang Wei, and Jianda Shao

The large-aperture pulse compression grating (PCG) is a critical component in generating an ultra-high-intensity, ultra-short-pulse laser; however, the size of the PCG manufactured by transmission holographic exposure is limited to large-scale high-quality materials. The reflective method is a potential way for solving the size limitation, but there is still no successful precedent due to the lack of scientific specifications and advanced processing technology of exposure mirrors. In this paper, an analytical model is developed to clarify the specifications of components, and advanced processing technology is adopted to control the spatial frequency errors. Hereafter, we have successfully fabricated a multilayer dielectric grating of 200 mm × 150 mm by using an off-axis reflective exposure system with Φ300 mm. This demonstration proves that PCGs can be manufactured by using the reflection holographic exposure method and shows the potential for manufacturing the meter-level gratings used in 100 petawatt class high-power lasers.

High Power Laser Science and Engineering
Nov. 13, 2023, Vol. 12 Issue 1 010000e1 (2024)
Reducing laser beam fluence and intensity fluctuations in symmetric and asymmetric compressors
Efim Khazanov

All space–time coupling effects arising in an asymmetric optical compressor consisting of two non-identical pairs of diffraction gratings are described analytically. In each pair, the gratings are identical and parallel to each other, whereas the distance between the gratings, the groove density and the angle of incidence are different in different pairs. It is shown that the compressor asymmetry does not affect the far-field fluence and on-axis focal intensity. The main distinctive feature of the asymmetric compressor is spatial noise lagging behind or overtaking the main pulse in proportion to the transverse wave vector. This results in a degraded contrast but reduces beam fluence fluctuations at the compressor output. Exact expressions are obtained for the spectrum of fluence fluctuations and fluence root mean square that depends only on one parameter characterizing compressor asymmetry. The efficiency of small-scale self-focusing suppression at subsequent pulse post-compression is estimated.

High Power Laser Science and Engineering
Nov. 06, 2023, Vol. 11 Issue 6 06000e93 (2023)
Mitigation of stimulated Raman scattering in a high-power fiber master oscillator power amplifier laser based on a dual-structure fiber grating
Kerong Jiao, Qingqing Kong, Yangning Guo, Jingwei Li, Chen Wu, Zhigang Han, Rihong Zhu, and Hua Shen

With the increasing power of fiber lasers, single chirped and tilted fiber Bragg gratings (CTFBGs) cannot completely mitigate continuously enhanced system-excited stimulated Raman scattering (SRS). Although improving the loss rate of a single CTFBG or cascading multiple CTFBGs can provide better suppression of the stronger SRS, excessive insertion loss may cause significant attenuation of the output power. Confronting the challenge, we firstly present an SRS mitigation method based on a dual-structure fiber grating in this paper. The dual-structure fiber grating comprises a CTFBG and a fiber Bragg grating structure, which were designed and fabricated on a passive 25/400 double-clad fiber. To evaluate the performance of the grating, a 3 kW fiber master oscillator power amplifier laser is established. The experimental results demonstrate that the SRS mitigation rate of the grating is greater than 30 dB (99.9%), whereas the insertion loss is only approximately 3%, thus allowing for minimal deterioration of the output power. This solves the contradiction between high suppression rate and high insertion loss faced by CTFBGs, which in turn makes dual-structure fiber gratings particularly suitable for mitigating SRS in 3–5 kW high-power fiber lasers.

High Power Laser Science and Engineering
Sep. 27, 2023, Vol. 11 Issue 6 06000e92 (2023)
Supersonic gas jet stabilization in laser–plasma acceleration
Zhen-Zhe Lei, Yan-Jun Gu, Zhan Jin, Shingo Sato, Alexei Zhidkov, Alexandre Rondepierre, Kai Huang, Nobuhiko Nakanii, Izuru Daito, Masakai Kando, and Tomonao Hosokai

Supersonic gas jets generated via a conical nozzle are widely applied in the laser wakefield acceleration of electrons. The stability of the gas jet is critical to the electron injection and the reproducibility of the wakefield acceleration. Here we discussed the role of the stilling chamber in a modified converging–diverging nozzle to dissipate the turbulence and to stabilize the gas jets. By the fluid dynamics simulations and the Mach–Zehnder interferometer measurements, the instability originating from the nonlinear turbulence is studied and the mechanism to suppress the instability is proposed. Both the numerical and experimental results prove that the carefully designed nozzle with a stilling chamber is able to reduce the perturbation by more than 10% compared with a simple-conical nozzle.

High Power Laser Science and Engineering
Editors' PickOct. 31, 2023, Vol. 11 Issue 6 06000e91 (2023)
Extremely powerful and frequency-tunable terahertz pulses from a table-top laser–plasma wiggler
Jie Cai, Yinren Shou, Yixing Geng, Liqi Han, Xinlu Xu, Shuangchun Wen, Baifei Shen, Jinqing Yu, and Xueqing Yan

The production of broadband, terawatt terahertz (THz) pulses has been demonstrated by irradiating relativistic lasers on solid targets. However, the generation of extremely powerful, narrow-band and frequency-tunable THz pulses remains a challenge. Here, we present a novel approach for such THz pulses, in which a plasma wiggler is elaborated by a table-top laser and a near-critical density plasma. In such a wiggler, the laser-accelerated electrons emit THz radiations with a period closely related to the plasma thickness. The theoretical model and numerical simulations predict that a THz pulse with a laser–THz energy conversion of over 2.0%, an ultra-strong field exceeding 80 GV/m, a divergence angle of approximately 20° and a center frequency tunable from 4.4 to 1.5 THz can be generated from a laser of 430 mJ. Furthermore, we demonstrate that this method can work across a wide range of laser and plasma parameters, offering potential for future applications with extremely powerful THz pulses.

High Power Laser Science and Engineering
Sep. 26, 2023, Vol. 11 Issue 6 06000e90 (2023)
Nanosecond laser conditioning of multilayer dielectric gratings for picosecond–petawatt laser systems
Kun Shuai, Yuanan Zhao, Xiaofeng Liu, Xiangkun Lin, Zhilin Xia, Keqiang Qiu, Dawei Li, He Gong, Yan Zhou, Jian Sun, Li Zhou, Youen Jiang, Yaping Dai, and Jianda Shao

Multilayer dielectric gratings (MLDGs) are crucial for pulse compression in picosecond–petawatt laser systems. Bulged nodular defects, embedded in coating stacks during multilayer deposition, influence the lithographic process and performance of the final MLDG products. In this study, the integration of nanosecond laser conditioning (NLC) into different manufacturing stages of MLDGs was proposed for the first time on multilayer dielectric films (MLDFs) and final grating products to improve laser-induced damage performance. The results suggest that the remaining nodular ejection pits introduced by the two protocols exhibit a high nanosecond laser damage resistance, which remains stable when the irradiated laser fluence is more than twice the nanosecond-laser-induced damage threshold (nanosecond-LIDT) of the unconditioned MLDGs. Furthermore, the picosecond-LIDT of the nodular ejection pit conditioned on the MLDFs was approximately 40% higher than that of the nodular defects, and the loss of the grating structure surrounding the nodular defects was avoided. Therefore, NLC is an effective strategy for improving the laser damage resistance of MLDGs.

High Power Laser Science and Engineering
Sep. 25, 2023, Vol. 11 Issue 6 06000e89 (2023)
Experimental investigation of the stimulated Raman scattering effect in high-power nanosecond superfluorescent fiber source
Chaoyu Ning, Shuzhen Zou, Haijuan Yu, Jiexi Zuo, Xuechun Chen, Shuang Xu, Shifei Han, Xinyao Li, Wenjuan Wu, Chaojian He, and Xuechun Lin

In this work, we experimentally investigate the dependence of the stimulated Raman scattering (SRS) effect on the seed linewidth of a high-power nanosecond superfluorescent fiber source (ns-SFS). The results reveal that the SRS in the ns-SFS amplifier is significantly influenced by the full width at half maximum (FWHM) of the ns-SFS seed, and there is an optimal FWHM linewidth of 2 nm to achieve the lowest SRS in our case. The first-order SRS power ratio increases rapidly when the seed’s linewidth deviates from the optimal FWHM linewidth. By power scaling the ns-SFS seed with the optimal FWHM linewidth, a narrowband all-fiberized ns-SFS amplifier is achieved with a maximum average power of 602 W, pulse energy of 24.1 mJ and corresponding peak power of 422.5 kW. This is the highest average power and pulse energy achieved for all-fiberized ns-SFS amplifiers to the best of our knowledge.

High Power Laser Science and Engineering
Sep. 27, 2023, Vol. 11 Issue 6 06000e88 (2023)
Demonstration of a diode-pumped dual-wavelength metastable krypton laser
Qingshan Liu, Rui Wang, Zining Yang, Jianyong Sun, Weiqiang Yang, Hongyan Wang, and Xiaojun Xu

Diode-pumped rare gas lasers are potential candidates for high-energy and high-beam quality laser systems. Currently, most investigations are focused on metastable Ar lasers. The Kr system has the unique advantages of higher quantum efficiency and lower discharge requirements for comparison. In this paper, a diode-pumped metastable Kr laser was demonstrated for the first time. Using a repetitively pulsed discharge at a Kr/He pressure of up to approximately 1500 Torr, metastable Kr atoms of more than 1013 cm–3 were generated. Under diode pumping, the laser realized a dual-wavelength output with an average output power of approximately 100 mW and an optical conversion efficiency of approximately 10% with respect to the absorbed pump power. A kinetics study involving population distribution and evolution was conducted to analyze the laser performance.

High Power Laser Science and Engineering
Sep. 27, 2023, Vol. 11 Issue 6 06000e87 (2023)
Zernike-coefficient extraction via helical beam reconstruction for optimization (ZEHBRO) in the far field
J. B. Ohland, D. Posor, U. Eisenbarth, V. Iancu, R. Ungureanu, D. Ursescu, and V. Bagnoud

The spatial distribution of beams with orbital angular momentum in the far field is known to be extremely sensitive to angular aberrations, such as astigmatism, coma and trefoil. This poses a challenge for conventional beam optimization strategies when a homogeneous ring intensity is required for an application. We developed a novel approach for estimating the Zernike coefficients of low-order angular aberrations in the near field based solely on the analysis of the ring deformations in the far field. A fast, iterative reconstruction of the focal ring recreates the deformations and provides insight into the wavefront deformations in the near field without relying on conventional phase retrieval approaches. The output of our algorithm can be used to optimize the focal ring, as demonstrated experimentally at the 100 TW beamline at the Extreme Light Infrastructure - Nuclear Physics facility.

High Power Laser Science and Engineering
Jul. 31, 2023, Vol. 11 Issue 6 06000e86 (2023)
Simple, stable and efficient nonlinear pulse compression through cascaded filamentation in air
Tao Pu, Kan Tian, Bo Hu, Zhongjun Wan, Linzhen He, Xuemei Yang, Han Wu, Yang Li, Weizhe Wang, and Houkun Liang

Nonlinear compression has become an obligatory technique along with the development of ultrafast lasers in generating ultrashort pulses with narrow pulse widths and high peak power. In particular, techniques of nonlinear compression have experienced a rapid progress as ytterbium (Yb)-doped lasers with pulse widths in the range from hundreds of femtoseconds to a few picoseconds have become mainstream laser tools for both scientific and industrial applications. Here, we report a simple and stable nonlinear pulse compression technique with high efficiency through cascaded filamentation in air followed by dispersion compensation. Pulses at a center wavelength of 1040 nm with millijoule pulse energy and 160 fs pulse width from a high-power Yb:CaAlGdO4 regenerative amplifier are compressed to 32 fs, with only 2.4% loss from the filamentation process. The compressed pulse has a stable output power with a root-mean-square variation of 0.2% over 1 hour.

High Power Laser Science and Engineering
Aug. 22, 2023, Vol. 11 Issue 6 06000e84 (2023)
All-optical nonlinear chiral ultrafast magnetization dynamics driven by circularly polarized magnetic fields
Luis Sánchez-Tejerina, Rodrigo Martín-Hernández, Rocío Yanes, Luis Plaja, Luis López-Díaz, and Carlos Hernández-García

Ultrafast laser pulses provide unique tools to manipulate magnetization dynamics at femtosecond timescales, where the interaction of the electric field usually dominates over the magnetic field. Recent proposals using structured laser beams have demonstrated the possibility to produce regions where intense oscillating magnetic fields are isolated from the electric field. In these conditions, we show that technologically feasible tesla-scale circularly polarized high-frequency magnetic fields induce purely precessional nonlinear magnetization dynamics. This fundamental result not only opens an avenue in the study of laser-induced ultrafast magnetization dynamics, but also sustains technological implications as a route to promote all-optical non-thermal magnetization dynamics both at shorter timescales – towards the sub-femtosecond regime – and at THz frequencies.

High Power Laser Science and Engineering
Aug. 29, 2023, Vol. 11 Issue 6 06000e82 (2023)
High-energy and high-peak-power GHz burst-mode all-fiber laser with a uniform envelope and tunable intra-burst pulses
Shuailin Liu, Bin Zhang, Yuanzhuang Bu, Desheng Zhao, Xiran Zhu, Linyong Yang, and Jing Hou

We report a Yb-doped all-fiber laser system generating burst-mode pulses with high energy and high peak power at a GHz intra-burst repetition rate. To acquire the uniform burst envelope, a double-pre-compensation structure with an arbitrary waveform laser diode driver and an acoustic optical modulator is utilized for the first time. The synchronous pumping is utilized for the system to reduce the burst repetition rate to 100 Hz and suppress the amplified spontaneous emission effect. By adjusting the gain of every stage, uniform envelopes with different output energies can be easily obtained. The intra-burst repetition rate can be tuned from 0.5 to 10 GHz actively modulated by an electro-optic modulator. Optimized by timing control of eight channels of analog signal and amplified by seven stages of Yb-doped fiber amplifier, the pulse energy achieves 13.3 mJ at 0.5 ns intra-burst pulse duration, and the maximum peak power reaches approximately 3.6 MW at 48 ps intra-burst pulse duration. To the best of our knowledge, for reported burst-mode all-fiber lasers, this is a record for output energy and peak power with nanosecond-level burst duration, and the widest tuning range of the intra-burst repetition rate. In particular, this flexibly tunable burst-mode laser system can be directly applied to generate high-power frequency-tunable microwaves.

High Power Laser Science and Engineering
Aug. 09, 2023, Vol. 11 Issue 6 06000e81 (2023)
Kilowatt-level supercontinuum generation in a single-stage random fiber laser with a half-open cavity
Li Jiang, Jinming Wu, Rui Song, Zilun Chen, Xiran Zhu, Fengchang Li, Kailong Li, Hanwei Zhang, and Jing Hou

The random distributed-feedback fiber laser (RFL) is a new approach to obtain a high-power stable supercontinuum (SC) source. To consider both structure simplification and high-power SC output, an innovative structure achieving a kilowatt-level SC output in a single-stage RFL with a half-open cavity is demonstrated in this paper. It consists of a fiber oscillator, a piece of long passive fiber and a broadband coupler, among which the broadband coupler acting as a feedback device is crucial in SC generation. When the system has no feedback, the backward output power is up to 298 W under the pump power of 1185 W. When the feedback is introduced before the pump laser, the backward power loss can be reduced and the pump can be fully utilized, which could promote forward output power and conversion efficiency significantly. Under the maximum pump power of 1847 W, a 1300 W SC with spectrum ranging from 887 to 1920 nm and SC conversion efficiency of 66% is obtained. To the best of our knowledge, it is the simplest structure used for high-power SC generation, and both the generated SC output power and the conversion efficiency are highest in the scheme of the half-opened RFL output SC.

High Power Laser Science and Engineering
Aug. 29, 2023, Vol. 11 Issue 6 06000e80 (2023)
Beam shaping in the high-energy kW-class laser system Bivoj at the HiLASE facility
Tomáš Paliesek, Petr Navrátil, Jan Pilař, Martin Divoký, Martin Smrž, and Tomáš Mocek

A fully automatic fail-safe beam shaping system based on a liquid crystal on a silicon spatial light modulator has been implemented in the high-energy kilowatt-average-power nanosecond laser system Bivoj. The shaping system corrects for gain nonuniformity and wavefront aberrations of the front-end of the system. The beam intensity profile and the wavefront at the output of the front-end were successfully improved by shaping. The beam homogeneity defined by the beam quality parameters was improved two to three times. The root-mean-square value of the wavefront was improved more than 10 times. Consequently, the shaped beam from the second preamplifier led to improvement of the beam profile at the output of the first main cryo-amplifier. The shaping system is also capable of creating nonordinary beam shapes, imprinting cross-references into the beam, or masking certain parts of the beam.

High Power Laser Science and Engineering
Sep. 26, 2023, Vol. 11 Issue 6 06000e79 (2023)
Competition among the two-plasmon decay of backscattered light, filamentation of the electron-plasma wave and side stimulated Raman scattering
K. Q. Pan, Z. C. Li, L. Guo, T. Gong, S. W. Li, D. Yang, C. Y. Zheng, B. H. Zhang, and X. T. He

Competition among the two-plasmon decay (TPD) of backscattered light of stimulated Raman scattering (SRS), filamentation of the electron-plasma wave (EPW) and forward side SRS is investigated by two-dimensional particle-in-cell simulations. Our previous work [K. Q. Pan et al., Nucl. Fusion 58, 096035 (2018)] showed that in a plasma with the density near 1/10 of the critical density, the backscattered light would excite the TPD, which results in suppression of the backward SRS. However, this work further shows that when the laser intensity is so high ( $>{10}^{16}$ W/cm2) that the backward SRS cannot be totally suppressed, filamentation of the EPW and forward side SRS will be excited. Then the TPD of the backscattered light only occurs in the early stage and is suppressed in the latter stage. Electron distribution functions further show that trapped-particle-modulation instability should be responsible for filamentation of the EPW. This research can promote the understanding of hot-electron generation and SRS saturation in inertial confinement fusion experiments.

High Power Laser Science and Engineering
Aug. 29, 2023, Vol. 11 Issue 6 06000e76 (2023)
Thulium-doped all-PM fiber chirped pulse amplifier delivering 314 W average power
Bo Ren, Can Li, Tao Wang, Kun Guo, Jian Wu, and Pu Zhou

A high-power all polarization-maintaining (PM) chirped pulse amplification (CPA) system operating in the 2.0 μm range is experimentally demonstrated. Large mode area (LMA) thulium-doped fiber (TDF) with a core/cladding diameter of 25/400 μm is employed to construct the main amplifier. Through dedicated coiling and cooling of the LMA-TDF to manage the loss of the higher order mode and thermal effect, a maximum average power of 314 W with a slope efficiency of 52% and polarization extinction ratio of 20 dB is realized. The pulse duration is compressed to 283 fs with a grating pair, corresponding to a calculated peak power of 10.8 MW, considering the compression efficiency of 88% and the estimated Strehl ratio of 89%. Moreover, through characterizing the noise properties of the laser, an integrated relative intensity noise of 0.11% at 100 Hz-1 MHz is obtained at the maximum output power, whereas the laser timing jitter is degraded by the final amplifier from 318 to 410 fs at an integration frequency of 5 kHz to 1 MHz, owing to the self-phase modulation effect-induced spectrum broadening. The root-mean-square of long-term power fluctuation is tested to be 0.6%, verifying the good stability of the laser operation. To the best of our knowledge, this is the highest average power of an ultrafast laser realized from an all-PM-fiber TDF-CPA system ever reported.

High Power Laser Science and Engineering
Aug. 14, 2023, Vol. 11 Issue 6 06000e73 (2023)
High-power free-running single-longitudinal-mode diamond Raman laser enabled by suppressing parasitic stimulated Brillouin scattering
Yuxuan Liu, Chengjie Zhu, Yuxiang Sun, Richard P. Mildren, Zhenxu Bai, Baitao Zhang, Weibiao Chen, Dijun Chen, Muye Li, Xuezong Yang, and Yan Feng

A continuous-wave (CW) single-longitudinal-mode (SLM) Raman laser at 1240 nm with power of up to 20.6 W was demonstrated in a free-running diamond Raman oscillator without any axial-mode selection elements. The SLM operation was achieved due to the spatial-hole-burning free nature of Raman gain and was maintained at the highest available pump power by suppressing the parasitic stimulated Brillouin scattering (SBS). A folded-cavity design was employed for reducing the perturbing effect of resonances at the pump frequency. At a pump power of 69 W, the maximum Stokes output reached 20.6 W, corresponding to a 30% optical-to-optical conversion efficiency from 1064 to 1240 nm. The result shows that parasitic SBS is the main physical process disturbing the SLM operation of Raman oscillator at higher power. In addition, for the first time, the spectral linewidth of a CW SLM diamond Raman laser was resolved using the long-delayed self-heterodyne interferometric method, which is 105 kHz at 20 W.

High Power Laser Science and Engineering
Aug. 15, 2023, Vol. 11 Issue 6 06000e72 (2023)
A 115 ps, 100 Hz high-beam-quality laser based on transient stimulated Brillouin scattering pulse compression
Jianfeng Yue, Yulei Wang, Mengyu Jia, Kai Li, Chen Cao, Yu Yu, Yunfei Li, and Zhiwei Lü

This work demonstrates the generation of short pulse duration and high-beam-quality laser pulses using transient stimulated Brillouin scattering at a high repetition rate. Thermal effects and optical breakdown are identified as the main factors that restrict energy reflectivity and beam quality under high repetition rates and transient situations. Through experimental analysis, the interaction length and focal point size are determined to be the key parameters in reducing the thermal effect by reducing the absorption of the laser pulse by the medium. The obtained results show that pulses with a duration of 175 ps and beam quality M2 of around 1.2 can be achieved with a maximum energy reflectivity of over 40% under an interaction length of 50 mm. Furthermore, at an interaction length of 90 mm, a pulse output with a minimum duration of 115 ps (0.5τQ) is achieved.

High Power Laser Science and Engineering
Aug. 29, 2023, Vol. 11 Issue 6 06000e70 (2023)
X-ray diffraction performance of thermally distorted crystals
Chuan Yang, Tao Liu, Kai Hu, Ye Zhu, Xiaohao Dong, Zhongmin Xu, Chao Feng, and Weiqing Zhang

The development of high-brightness X-ray free electron lasers (XFELs), such as hard X-ray self-seeding free electron lasers and XFEL oscillators (XFELOs), brings a severe challenge to the crystal monochromator due to a strong non-uniform thermal load. The distortion caused by spatial temperature gradients can severely affect the optical performance of crystals. Therefore, this paper presents a model to estimate the performance of non-uniform thermally distorted crystals. The model not only takes into account thermal strain, slope error and incident angle deviation, but also considers temperature-dependent factors such as the Debye–Waller factor and electric susceptibility. Our investigation indicates that the Debye–Waller factor reduces the height and bandwidth of rocking curves, and the impact of the electric susceptibility is tiny. The proposed model can describe the distortion of the reflectivity and transmissivity curves of non-uniform thermally loaded crystals and can be applied in the design of crystal monochromators, crystal splitters, crystal compressors and XFELOs.

High Power Laser Science and Engineering
Jul. 05, 2023, Vol. 11 Issue 6 06000e69 (2023)
Prospects for statistical tests of strong-field quantum electrodynamics with high-intensity lasers
C. Olofsson, and A. Gonoskov

Exploiting high-energy electron beams colliding into high-intensity laser pulses brings an opportunity to reach high values of the dimensionless rest-frame acceleration $\chi$ and thereby invoke processes described by strong-field quantum electrodynamics (SFQED). Measuring deviations from the results of Furry-picture perturbation theory in SFQED at high $\chi$ can be valuable for testing existing predictions, as well as for guiding further theoretical developments. Nevertheless, such experimental measurements are challenging due to the probabilistic nature of the interaction processes, dominating signals of low- $\chi$ interactions and limited capabilities to control and measure the alignment and synchronization in such collision experiments. Here we elaborate a methodology of using approximate Bayesian computations for drawing statistical inferences based on the results of many repeated experiments despite partially unknown collision parameters that vary between experiments. As a proof-of-principle, we consider the problem of inferring the effective mass change due to coupling with the strong-field environment.

High Power Laser Science and Engineering
Aug. 01, 2023, Vol. 11 Issue 6 06000e67 (2023)
High-energy, alignment-insensitive, injection-seeded Q-switched Ho:yttrium aluminum garnet single-frequency laser
Dong Yan, Yue Yuan, Yunpeng Wang, Jiawei Fan, Jiaze Wu, Xiaoming Duan, Sining Li, Tongyu Dai, and Youlun Ju

A high-energy, alignment-insensitive, injection-seeded Q-switched Ho:yttrium aluminum garnet (YAG) single-frequency laser is developed. Both the slave Q-switched laser and the seed laser are Ho:YAG ring lasers based on a pair of corner cubic reflectors. The seed laser has an available power of 830 mW at 2096.667 nm. At 100 Hz, the Q-switched Ho:YAG laser provides a single-frequency pulsed output using injection-seeded technology. The 7.3 mJ single-frequency pulse energy from the slave laser has a pulse width of 161.2 ns and is scaled to 33.3 mJ after passing through the Ho:YAG single-pass amplifier. According to the measurement results of the heterodyne beating technique, the single-frequency pulse has a half-width of 4.12 MHz.

High Power Laser Science and Engineering
Jul. 04, 2023, Vol. 11 Issue 5 05000e66 (2023)
Kilowatt-class high-energy frequency conversion to 95 J at 10 Hz at 515 nm
Martin Divoky, Jonathan Phillips, Jan Pilar, Martin Hanus, Petr Navratil, Ondrej Denk, Tomas Paliesek, Patricie Severova, Danielle Clarke, Martin Smrz, Thomas Butcher, Chris Edwards, John Collier, and Tomas Mocek

We report on frequency doubling of high-energy, high repetition rate ns pulses from a cryogenically gas cooled multi-slab ytterbium-doped yttrium aluminum garnet laser system, Bivoj/DiPOLE, using a type-I phase matched lithium triborate crystal. We achieved conversion to 515 nm with energy of 95 J at repetition rate of 10 Hz and conversion efficiency of 79%. High conversion efficiency was achieved due to successful depolarization compensation of the fundamental input beam.

High Power Laser Science and Engineering
On the CoverJul. 27, 2023, Vol. 11 Issue 5 05000e65 (2023)
Accelerated protons with energies up to 70 MeV based on the optimized SG-II Peta-watt laser facility
H. H. An, W. Wang, J. Xiong, C. Wang, X. Pan, X. P. Ouyang, S. Jiang, Z. Y. Xie, P. P. Wang, Y. L. Yao, N. Hua, Y. Wang, Z. C. Jiang, Q. Xiao, F. C. Ding, Y. T. Wan, X. Liu, R. R. Wang, Z. H. Fang, P. Q. Yang, Y. E. Jiang, P. Z. Zhang, B. Q. Zhu, J. R. Sun, B. Qiao, A. L. Lei, and J. Q. Zhu

The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.

High Power Laser Science and Engineering
Jun. 30, 2023, Vol. 11 Issue 5 05000e63 (2023)
Optical rectification in 4H-SiC: paving the way to generate strong terahertz fields with ultra-wide bandwidth
Fangjie Li, Kai Zhong, Yiwen Zhang, Tong Wu, Yuxin Liu, Hongzhan Qiao, Jining Li, Degang Xu, and Jianquan Yao

The 4H-SiC crystal is found to have great potential in terahertz generation via nonlinear optical frequency conversion due to its extremely high optical damage threshold, wide transparent range, etc. In this paper, optical rectification (OR) with tilted-pulse-front (TPF) setting based on the 4H-SiC crystal is proposed. The theory accounts for the optimization of incident pulse pre-chirping in the TPF OR process under high-intensity femtosecond laser pumping. Compared with the currently recognized LiNbO3-based TPF OR, which generates a single-cycle terahertz pulse within 3 THz, 4H-SiC demonstrates a significant advantage in producing ultra-widely tunable (up to over 14 THz, TPF angle 31°–38°) terahertz waves with high efficiency (~10–2) and strong field (~MV/cm). Besides, the spectrum characteristics, as well as the evolution from single- to multi-cycle terahertz pulses can be modulated flexibly by pre-chirping. The simulation results show that 4H-SiC enables terahertz frequency extending to an unprecedent range by OR, which has extremely important potential in strong-field terahertz applications.

High Power Laser Science and Engineering
Jun. 20, 2023, Vol. 11 Issue 5 05000e62 (2023)
Effect of subsurface impurity defects on laser damage resistance of beam splitter coatings
Wenyun Du, Meiping Zhu, Jun Shi, Tianbao Liu, Jian Sun, Kui Yi, and Jianda Shao

The laser-induced damage threshold (LIDT) of plate laser beam splitter (PLBS) coatings is closely related to the subsurface absorption defects of the substrate. Herein, a two-step deposition temperature method is proposed to understand the effect of substrate subsurface impurity defects on the LIDT of PLBS coatings. Firstly, BK7 substrates are heat-treated at three different temperatures. The surface morphology and subsurface impurity defect distribution of the substrate before and after the heat treatment are compared. Then, a PLBS coating consisting of alternating HfO2–Al2O3 mixture and SiO2 layers is designed to achieve a beam-splitting ratio (transmittance to reflectance, s-polarized light) of approximately 50:50 at 1053 nm and an angle of incidence of 45°, and it is prepared under four different deposition processes. The experimental and simulation results show that the subsurface impurity defects of the substrate migrate to the surface and accumulate on the surface during the heat treatment, and become absorption defect sources or nodule defect seeds in the coating, reducing the LIDT of the coating. The higher the heat treatment temperature, the more evident the migration and accumulation of impurity defects. A lower deposition temperature (at which the coating can be fully oxidized) helps to improve the LIDT of the PLBS coating. When the deposition temperature is 140°C, the LIDT (s-polarized light, wavelength: 1064 nm, pulse width: 9 ns, incident angle: 45°) of the PLBS coating is 26.2 J/cm2, which is approximately 6.7 times that of the PLBS coating deposited at 200°C. We believe that the investigation into the laser damage mechanism of PLBS coatings will help to improve the LIDT of coatings with partial or high transmittance at laser wavelengths.

High Power Laser Science and Engineering
May. 25, 2023, Vol. 11 Issue 5 05000e61 (2023)
All- and mixed-dielectric grating for Nd:glass-based high-energy pulse compression
Yuxing Han, Hongchao Cao, Fanyu Kong, Yunxia Jin, and Jianda Shao

Maximizing the energy-loading performance of gratings is a universal theme in high-energy pulse compression. However, sporadic grating designs strongly restrict the development of high-power laser engineering. This study proposes an all- and mixed-dielectric grating design paradigm for Nd:glass-based pulse compressors. The solution regions are classified according to the line density. High diffraction efficiency solutions are described in more detail based on the dispersion amount and incident angle. Moreover, an energy scaling factor of 7.09 times larger than that of the National Ignition Facility’s Advanced Radiographic Capability (NIF-ARC) is obtained by taking advantage of the low electric field intensity at transverse magnetic polarization and a small incident angle. These results make a pioneering contribution to facilitate future 20–50-petawatt-class ultrafast laser systems.

High Power Laser Science and Engineering
Sep. 18, 2023, Vol. 11 Issue 5 05000e60 (2023)
Spatiotemporally mode-locked soliton fiber laser at 2.8 μm
Ying’an Chen, Yicheng Zhou, Zhipeng Qin, Guoqiang Xie, Peng Yuan, Jingui Ma, and Liejia Qian

Spatiotemporal mode-locking creates great opportunity for pulse energy scaling and nonlinear optics research in fiber. Until now, spatiotemporal mode-locking has only been realized in normal-dispersion dissipative soliton and similariton fiber lasers. In this paper, we demonstrated the first experimental realization of a spatiotemporally mode-locked soliton laser in mid-infrared fluoride fiber with anomalous dispersion. The mode-locked fluoride fiber oscillator directly generated a record pulse energy of 16.1 nJ and peak power of 74.6 kW at 2.8 μm wavelength. This work extends the spatiotemporal mode-locking to soliton fiber lasers and should have a wide interest for the laser community.

High Power Laser Science and Engineering
Jul. 05, 2023, Vol. 11 Issue 5 05000e59 (2023)
Generation of a curved plasma channel from a discharged capillary for intense laser guiding
Jian-Long Li, Bo-Yuan Li, Xin-Zhe Zhu, Ze-Wu Bi, Xin-Hui Wen, Lin Lu, Xiao-Hui Yuan, Feng Liu, and Min Chen

Straight plasma channels are widely used to guide relativistic intense laser pulses over several Rayleigh lengths for laser wakefield acceleration. Recently, a curved plasma channel with gradually varied curvature was suggested to guide a fresh intense laser pulse and merge it into a straight channel for staged wakefield acceleration [Phys. Rev. Lett. 120, 154801 (2018)]. In this work, we report the generation of such a curved plasma channel from a discharged capillary. Both longitudinal and transverse density distributions of the plasma inside the channel were diagnosed by analyzing the discharging spectroscopy. Effects of the gas-filling mode, back pressure and discharging voltage on the plasma density distribution inside the specially designed capillary are studied. Experiments show that a longitudinally uniform and transversely parabolic plasma channel with a maximum channel depth of 47.5 μm and length of 3 cm can be produced, which is temporally stable enough for laser guiding. Using such a plasma channel, a laser pulse with duration of 30 fs has been successfully guided along the channel with the propagation direction bent by 10.4°.

High Power Laser Science and Engineering
May. 25, 2023, Vol. 11 Issue 5 05000e58 (2023)
Laser chirp controlled relativistic few-cycle mid-infrared pulse generation
Dongao Li, Guobo Zhang, Jie Zhao, Yanting Hu, Yu Lu, Hao Zhang, Qianni Li, Dongze Zhang, Rong Sha, Fuqiu Shao, Zhengming Sheng, and Tongpu Yu

Relativistic few-cycle mid-infrared (mid-IR) pulses are unique tools for strong-field physics and ultrafast science, but are difficult to generate with traditional nonlinear optical methods. Here, we propose a scheme to generate such pulses with high efficiency via plasma-based frequency modulation with a negatively chirped laser pulse (NCLP). The NCLP is rapidly compressed longitudinally due to dispersion and plasma etching, and its central frequency is downshifted via photon deceleration due to the enhanced laser intensity and plasma density modulations. Simulation results show that few-cycle mid-IR pulses with the maximum center wavelength of $7.9\;\unicode{x3bc} \mathrm{m}$ and pulse intensity of ${a}_{\mathrm{MIR}}=2.9$ can be generated under a proper chirp parameter. Further, the maximum energy conversion efficiency can approach 5.0%. Such a relativistic mid-IR source is promising for a wide range of applications.

High Power Laser Science and Engineering
Jun. 23, 2023, Vol. 11 Issue 5 05000e57 (2023)
Modeling of transverse stimulated Raman scattering in KDP/DKDP in large-aperture plates suitable for polarization control
Hu Huang, Tanya Z. Kosc, Terrance J. Kessler, and Stavros G. Demos

Transverse stimulated Raman scattering (TSRS) in potassium dihydrogen phosphate (KDP) and deuterated potassium dihydrogen phosphate (DKDP) plates for large-aperture, inertial confinement fusion (ICF)-class laser systems is a well-recognized limitation giving rise to parasitic energy conversion and laser-induced damage. The onset of TSRS is manifested in plates exposed to the ultraviolet section of the beam. TSRS amplification is a coherent process that grows exponentially and is distributed nonuniformly in the crystal and at the crystal surfaces. To understand the growth and spatial distribution of TSRS energy in various configurations, a modeling approach has been developed to simulate the operational conditions relevant to ICF-class laser systems. Specific aspects explored in this work include (i) the behavior of TSRS in large-aperture crystal plates suitable for third-harmonic generation and use as wave plates for polarization control in current-generation ICF-class laser system configurations; (ii) methods, and their limitations, of TSRS suppression and (iii) optimal geometries to guide future designs.

High Power Laser Science and Engineering
Jun. 14, 2023, Vol. 11 Issue 5 05000e54 (2023)
High-power mid-infrared femtosecond master oscillator power amplifier Er:ZBLAN fiber laser system
Linpeng Yu, Jinhui Liang, Qinghui Zeng, Jiacheng Wang, Xing Luo, Jinzhang Wang, Peiguang Yan, Fanlong Dong, Xing Liu, Qitao Lü, Chunyu Guo, and Shuangchen Ruan

High-power femtosecond mid-infrared (MIR) lasers are of vast importance to both fundamental research and applications. We report a high-power femtosecond master oscillator power amplifier laser system consisting of a single-mode Er:ZBLAN fiber mode-locked oscillator and pre-amplifier followed by a large-mode-area Er:ZBLAN fiber main amplifier. The main amplifier is actively cooled and bidirectionally pumped at 976 nm, generating a slope efficiency of 26.9%. Pulses of 8.12 W, 148 fs at 2.8 μm with a repetition rate of 69.65 MHz are achieved. To the best of our knowledge, this is the highest average power ever achieved from a femtosecond MIR laser source. Such a compact ultrafast laser system is promising for a wide range of applications, such as medical surgery and material processing.

High Power Laser Science and Engineering
Jun. 01, 2023, Vol. 11 Issue 4 04000e53 (2023)
Timing fluctuation correction for the front end of a 100-PW laser
Hongyang Li, Keyang Liu, Xinliang Wang, Xingyan Liu, Xianze Meng, Yanqi Liu, Liwei Song, Yuxin Leng, and Ruxin Li

The development of high-intensity ultrafast laser facilities provides the possibility to create novel physical phenomena and matter states. The timing fluctuation of the laser pulses is crucial for pump–probe experiments, which is one of the vital means to observe the ultrafast dynamics driven by intense laser pulses. In this paper, we demonstrate the timing fluctuation characterization and control of the front end of a 100-PW laser that is composed of a high-contrast optical parametric amplifier (seed) and a 200-TW optical parametric chirped pulse amplifier (preamplifier). By combining the timing jitter measurement with a feedback system, the laser seed and preamplifier are synchronized to the reference with timing fluctuations of 1.82 and 4.48 fs, respectively. The timing system will be a key prerequisite for the stable operation of 100-PW laser facilities and provide the basis for potential pump–probe experiments performed on the laser.

High Power Laser Science and Engineering
Jun. 13, 2023, Vol. 11 Issue 4 04000e52 (2023)
Synchronous post-acceleration of laser-driven protons in helical coil targets by controlling the current dispersion
Zhipeng Liu, Zhusong Mei, Defeng Kong, Zhuo Pan, Shirui Xu, Ying Gao, Yinren Shou, Pengjie Wang, Zhengxuan Cao, Yulan Liang, Ziyang Peng, Jiarui Zhao, Shiyou Chen, Tan Song, Xun Chen, Tianqi Xu, Xueqing Yan, and Wenjun Ma

Post-acceleration of protons in helical coil targets driven by intense, ultrashort laser pulses can enhance ion energy by utilizing the transient current from the targets’ self-discharge. The acceleration length of protons can exceed a few millimeters, and the acceleration gradient is of the order of GeV/m. How to ensure the synchronization between the accelerating electric field and the protons is a crucial problem for efficient post-acceleration. In this paper, we study how the electric field mismatch induced by current dispersion affects the synchronous acceleration of protons. We propose a scheme using a two-stage helical coil to control the current dispersion. With optimized parameters, the energy gain of protons is increased by four times. Proton energy is expected to reach 45 MeV using a hundreds-of-terawatts laser, or more than 100 MeV using a petawatt laser, by controlling the current dispersion.

High Power Laser Science and Engineering
Apr. 18, 2023, Vol. 11 Issue 4 04000e51 (2023)
Nonlinear chirped pulse amplification for a 100-W-class GHz femtosecond all-fiber laser system at 1.5 m
Yiheng Fan, Hao Xiu, Wei Lin, Xuewen Chen, Xu Hu, Wenlong Wang, Junpeng Wen, Hao Tian, Molei Hao, Chiyi Wei, Luyi Wang, Xiaoming Wei, and Zhongmin Yang

In this work, we present a high-power, high-repetition-rate, all-fiber femtosecond laser system operating at 1.5 $\unicode{x3bc}$ m. This all-fiber laser system can deliver femtosecond pulses at a fundamental repetition rate of 10.6 GHz with an average output power of 106.4 W – the highest average power reported so far from an all-fiber femtosecond laser at 1.5 $\unicode{x3bc}$ m, to the best of our knowledge. By utilizing the soliton-effect-based pulse compression effect with optimized pre-chirping dispersion, the amplified pulses are compressed to 239 fs in an all-fiber configuration. Empowered by such a high-power ultrafast fiber laser system, we further explore the nonlinear interaction among transverse modes LP01, LP11 and LP21 that are expected to potentially exist in fiber laser systems using large-mode-area fibers. The intermodal modulational instability is theoretically investigated and subsequently identified in our experiments. Such a high-power all-fiber ultrafast laser without bulky free-space optics is anticipated to be a promising laser source for applications that specifically require compact and robust operation.

High Power Laser Science and Engineering
May. 25, 2023, Vol. 11 Issue 4 04000e50 (2023)
Phase imaging of irradiated foils at the OMEGA EP facility using phase-stepping X-ray Talbot–Lau deflectometry
G. Pérez-Callejo, V. Bouffetier, L. Ceurvorst, T. Goudal, S. R. Klein, D. Svyatskiy, M. Holec, P. Perez-Martin, K. Falk, A. Casner, T. E. Weber, G. Kagan, and M. P. Valdivia

Diagnosing the evolution of laser-generated high energy density (HED) systems is fundamental to develop a correct understanding of the behavior of matter under extreme conditions. Talbot–Lau interferometry constitutes a promising tool, since it permits simultaneous single-shot X-ray radiography and phase-contrast imaging of dense plasmas. We present the results of an experiment at OMEGA EP that aims to probe the ablation front of a laser-irradiated foil using a Talbot–Lau X-ray interferometer. A polystyrene (CH) foil was irradiated by a laser of 133 J, 1 ns and probed with 8 keV laser-produced backlighter radiation from Cu foils driven by a short-pulse laser (153 J, 11 ps). The ablation front interferograms were processed in combination with a set of reference images obtained ex situ using phase-stepping. We managed to obtain attenuation and phase-shift images of a laser-irradiated foil for electron densities above ${10}^{22}\;{\mathrm{cm}}^{-3}$ . These results showcase the capabilities of Talbot–Lau X-ray diagnostic methods to diagnose HED laser-generated plasmas through high-resolution imaging.

High Power Laser Science and Engineering
May. 26, 2023, Vol. 11 Issue 4 04000e49 (2023)
Millijoule ultrafast optical parametric amplification as replacement for high-gain regenerative amplifiers
Yannik Zobus, Christian Brabetz, Johannes Hornung, Jonas B. Ohland, Dirk Reemts, Ji-Ping Zou, Markus Loeser, Daniel Albach, Ulrich Schramm, and Vincent Bagnoud

We report on the development of an ultrafast optical parametric amplifier front-end for the Petawatt High Energy Laser for heavy Ion eXperiments (PHELIX) and the Petawatt ENergy-Efficient Laser for Optical Plasma Experiments (PEnELOPE) facilities. This front-end delivers broadband and stable amplification up to 1 mJ per pulse while maintaining a high beam quality. Its implementation at PHELIX allowed one to bypass the front-end amplifier, which is known to be a source of pre-pulses. With the bypass, an amplified spontaneous emission contrast of $4.9\times {10}^{-13}$ and a pre-pulse contrast of $6.2\times {10}^{-11}$ could be realized. Due to its high stability, high beam quality and its versatile pump amplifier, the system offers an alternative for high-gain regenerative amplifiers in the front-end of various laser systems.

High Power Laser Science and Engineering
Mar. 30, 2023, Vol. 11 Issue 4 04000e48 (2023)
Linewidth narrowing in free-space-running diamond Brillouin lasers
Duo Jin, Zhenxu Bai, Zhongan Zhao, Yifu Chen, Wenqiang Fan, Yulei Wang, Richard P. Mildren, and Zhiwei Lü

This study analyzes the linewidth narrowing characteristics of free-space-running Brillouin lasers and investigates the approaches to achieve linewidth compression and power enhancement simultaneously. The results show that the Stokes linewidth behavior in a free-space-running Brillouin laser cavity is determined by the phase diffusion of the pump and the technical noise of the system. Experimentally, a Stokes light output with a power of 22.5 W and a linewidth of 3.2 kHz was obtained at a coupling mirror reflectivity of 96%, which is nearly 2.5 times compressed compared with the linewidth of the pump (7.36 kHz). In addition, the theorical analysis shows that at a pump power of 60 W and a coupling mirror reflectivity of 96%, a Stokes output with a linewidth of 1.6 kHz and up to 80% optical conversion efficiency can be achieved by reducing the insertion loss of the intracavity. This study provides a promising technical route to achieve high-power ultra-narrow linewidth special wavelength laser radiations.

High Power Laser Science and Engineering
Jun. 06, 2023, Vol. 11 Issue 4 04000e47 (2023)
Pulse repetition-rate effect on the intensity inside a femtosecond laser filament in air
Fukang Yin, Juan Long, Yaoxiang Liu, Yingxia Wei, Bin Zhu, Kainan Zhou, Tie-Jun Wang, Yuxin Leng, and Ruxin Li

As intense, ultrashort, kHz-repetition-rate laser systems become commercially available, pulse cumulative effects are critical for laser filament-based applications. In this work, the pulse repetition-rate effect on femtosecond laser filamentation in air was investigated both numerically and experimentally. The pulse repetition-rate effect has negligible influence at the leading edge of the filament. Clear intensity enhancement from a high-repetition pulse is observed at the peak and tailing edge of the laser filament. As the repetition rate of the laser pulses increases from 100 to 1000 Hz, the length of the filament extends and the intensity inside the filament increases. A physical picture based on the pulse repetition-rate dependent ‘low-density hole’ effect on filamentation is proposed to explain the obtained results well.

High Power Laser Science and Engineering
Mar. 30, 2023, Vol. 11 Issue 4 04000e46 (2023)
Parametric amplification as a single-shot time-resolved off-harmonic probe for laser–matter interactions
Filip Grepl, Maksym Tryus, Timofej Chagovets, and Daniele Margarone

An optical probing of laser–plasma interactions can provide time-resolved measurements of plasma density; however, single-shot and multi-frame probing capabilities generally rely on complex setups with limited flexibility. We have demonstrated a new method for temporal resolution of the rapid dynamics ( $\sim 170$ fs) of plasma evolution within a single laser shot based on the generation of several consecutive probe pulses from a single beta barium borate-based optical parametric amplifier using a fraction of the driver pulse with the possibility to adjust the central wavelengths and delays of particular pulses by optical delay lines. The flexibility and scalability of the proposed experimental technique are presented and discussed.

High Power Laser Science and Engineering
On the Cover , On the CoverApr. 16, 2023, Vol. 11 Issue 4 04000e45 (2023)
Tango Controls and data pipeline for petawatt laser experiments
Nils Weiße, Leonard Doyle, Johannes Gebhard, Felix Balling, Florian Schweiger, Florian Haberstroh, Laura D. Geulig, Jinpu Lin, Faran Irshad, Jannik Esslinger, Sonja Gerlach, Max Gilljohann, Vignesh Vaidyanathan, Dennis Siebert, Andreas Münzer, Gregor Schilling, Jörg Schreiber, Peter G. Thirolf, Stefan Karsch, and Andreas Döpp

The Centre for Advanced Laser Applications in Garching, Germany, is home to the ATLAS-3000 multi-petawatt laser, dedicated to research on laser particle acceleration and its applications. A control system based on Tango Controls is implemented for both the laser and four experimental areas. The device server approach features high modularity, which, in addition to the hardware control, enables a quick extension of the system and allows for automated data acquisition of the laser parameters and experimental data for each laser shot. In this paper we present an overview of our implementation of the control system, as well as our advances in terms of experimental operation, online supervision and data processing. We also give an outlook on advanced experimental supervision and online data evaluation – where the data can be processed in a pipeline – which is being developed on the basis of this infrastructure.

High Power Laser Science and Engineering
Feb. 21, 2023, Vol. 11 Issue 4 04000e44 (2023)
Versatile tape-drive target for high-repetition-rate laser-driven proton acceleration – CORRIGENDUM
N. Xu, M. J. V. Streeter, O. C. Ettlinger, H. Ahmed, S. Astbury, M. Borghesi, N. Bourgeois, C. B. Curry, S. J. D. Dann, N. P. Dover, T. Dzelzainis, V. Istokskaia, M. Gauthier, L. Giuffrida, G. D. Glenn, S. H. Glenzer, R. J. Gray, J. S. Green, G. S. Hicks, C. Hyland, M. King, B. Loughran, D. Margarone, O. McCusker, P. McKenna, C. Parisuaña, P. Parsons, C. Spindloe, D. R. Symes, F. Treffert, C. A. J. Palmer, and Z. Najmudin

High Power Laser Science and Engineering
Jun. 05, 2023, Vol. 11 Issue 4 04000e43 (2023)
Ion-bunch energy acoustic tracing by modulation of the depth-dose curve
A. Praßelsperger, F. Balling, H.-P. Wieser, K. Parodi, and J. Schreiber

Characterizing exact energy density distributions for laser-accelerated ion bunches in a medium is challenging due to very high beam intensities and the electro-magnetic pulse emitted in the laser–plasma interaction. Ion-bunch energy acoustic tracing allows for reconstructing the spatial energy density from the ionoacoustic wave generated upon impact in water. We have extended this approach to tracing ionoacoustic modulations of broad energy distributions by introducing thin foils in the water reservoir to shape the acoustic waves at distinct points along the depth–dose curve. Here, we present first simulation studies of this new detector and reconstruction approach, which provides an online read-out of the deposited energy with depth within the centimeter range behind the ion source of state-of-the-art laser–plasma-based accelerators.

High Power Laser Science and Engineering
Mar. 02, 2023, Vol. 11 Issue 3 03000e42 (2023)
Laser pulse shape designer for direct-drive inertial confinement fusion implosions
Tao Tao, Guannan Zheng, Qing Jia, Rui Yan, and Jian Zheng

Pulse shaping is a powerful tool for mitigating implosion instabilities in direct-drive inertial confinement fusion (ICF). However, the high-dimensional and nonlinear nature of implosions makes the pulse optimization quite challenging. In this research, we develop a machine-learning pulse shape designer to achieve high compression density and stable implosion. The facility-specific laser imprint pattern is considered in the optimization, which makes the pulse design more relevant. The designer is applied to the novel double-cone ignition scheme, and simulation shows that the optimized pulse increases the areal density expectation by 16% in one dimension, and the clean-fuel thickness by a factor of four in two dimensions. This pulse shape designer could be a useful tool for direct-drive ICF instability control.

High Power Laser Science and Engineering
Editors' PickApr. 26, 2023, Vol. 11 Issue 3 03000e41 (2023)
Inertial confinement fusion ignition achieved at the National Ignition Facility – an editorial
C. N. Danson, and L. A. Gizzi

On behalf of all at High Power Laser Science and Engineering we would like to congratulate the team at Lawrence Livermore National Laboratory (LLNL) on demonstrating fusion ignition at the National Ignition Facility. This major scientific achievement was realized on the 5 December 2022 at the LLNL and announced at a press briefing on the 13 December 2022 by the United States Department of Energy’s National Nuclear Security Administration. This was a historic milestone and the culmination of decades of effort.

High Power Laser Science and Engineering
Apr. 27, 2023, Vol. 11 Issue 3 03000e40 (2023)
Monitoring and characterization of particle contamination in the pulse compression chamber of the OMEGA EP laser system
B. N. Hoffman, N. Savidis, and S. G. Demos

The laser-damage performance of optics is known to be negatively affected by microscale particle contamination induced by the operational environment. This work investigates the properties of particles accumulating in various locations near critical optics inside the OMEGA EP grating compressor chamber during quarterly operational periods over a 2-year duration. The particles found were characterized using optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The analysis indicates significant concentrations of micrometer- to nanometer-scale particles inside the vacuum chamber, with higher values observed near the port leading to the OMEGA EP target chamber. The distribution of the chemical composition of these particles varies between collection periods. Although understanding of the mechanisms of particle generation and transport remains uncertain, the hypothesis is that this particle load represents a risk for contaminating the surfaces of high-value optics located inside the chamber, including the compression gratings and deformable mirrors, and therefore affecting their laser-damage resistance and overall operational lifetime.

High Power Laser Science and Engineering
Apr. 20, 2023, Vol. 11 Issue 3 03000e39 (2023)
Three-dimensional acoustic monitoring of laser-accelerated protons in the focus of a pulsed-power solenoid lens
S. Gerlach, F. Balling, A. K. Schmidt, F. E. Brack, F. Kroll, J. Metzkes-Ng, M. Reimold, U. Schramm, M. Speicher, K. Zeil, K. Parodi, and J. Schreiber

The acoustic pulse emitted from the Bragg peak of a laser-accelerated proton bunch focused into water has recently enabled the reconstruction of the bunch energy distribution. By adding three ultrasonic transducers and implementing a fast data analysis of the filtered raw signals, I-BEAT (Ion-Bunch Energy Acoustic Tracing) 3D now provides the mean bunch energy and absolute lateral bunch position in real-time and for individual bunches. Relative changes in energy spread and lateral bunch size can also be monitored. Our experiments at DRACO with proton bunch energies between 10 and 30 MeV reveal sub-MeV and sub-mm resolution. In addition to this 3D bunch information, the signal strength correlates also with the absolute bunch particle number.

High Power Laser Science and Engineering
Feb. 23, 2023, Vol. 11 Issue 3 03000e38 (2023)
Depolarization of intense laser beams by dynamic plasma density gratings
Y. X. Wang, S. M. Weng, P. Li, Z. C. Shen, X. Y. Jiang, J. Huang, X. L. Zhu, H. H. Ma, X. B. Zhang, X. F. Li, Z. M. Sheng, and J. Zhang

As a typical plasma-based optical element that can sustain ultra-high light intensity, plasma density gratings driven by intense laser pulses have been extensively studied for wide applications. Here, we show that the plasma density grating driven by two intersecting driver laser pulses is not only nonuniform in space but also varies over time. Consequently, the probe laser pulse that passes through such a dynamic plasma density grating will be depolarized, that is, its polarization becomes spatially and temporally variable. More importantly, the laser depolarization may spontaneously take place for crossed laser beams if their polarization angles are arranged properly. The laser depolarization by a dynamic plasma density grating may find application in mitigating parametric instabilities in laser-driven inertial confinement fusion.

High Power Laser Science and Engineering
Feb. 23, 2023, Vol. 11 Issue 3 03000e37 (2023)
Measurement of electron beam transverse slice emittance using a focused beamline
Kangnan Jiang, Ke Feng, Hao Wang, Xiaojun Yang, Peile Bai, Yi Xu, Yuxin Leng, Wentao Wang, and Ruxin Li

A single-shot measurement of electron emittance was experimentally accomplished using a focused transfer line with a dipole. The betatron phase of electrons based on laser wakefield acceleration (LWFA) is energy dependent owing to the coupling of the longitudinal acceleration field and the transverse focusing (defocusing) field in the bubble. The phase space presents slice information after phase compensation relative to the center energy. Fitting the transverse size of the electron beam at different energy slices in the energy spectrum measured 0.27 mm mrad in the experiment. The diagnosis of slice emittance facilitates local electron quality manipulation, which is important for the development of LWFA-based free electron lasers. The quasi-3D particle-in-cell simulations matched the experimental results and analysis well.

High Power Laser Science and Engineering
Mar. 13, 2023, Vol. 11 Issue 3 03000e36 (2023)
Automated control and optimization of laser-driven ion acceleration
B. Loughran, M. J. V. Streeter, H. Ahmed, S. Astbury, M. Balcazar, M. Borghesi, N. Bourgeois, C. B. Curry, S. J. D. Dann, S. DiIorio, N. P. Dover, T. Dzelzainis, O. C. Ettlinger, M. Gauthier, L. Giuffrida, G. D. Glenn, S. H. Glenzer, J. S. Green, R. J. Gray, G. S. Hicks, C. Hyland, V. Istokskaia, M. King, D. Margarone, O. McCusker, P. McKenna, Z. Najmudin, C. Parisuaña, P. Parsons, C. Spindloe, D. R. Symes, A. G. R. Thomas, F. Treffert, N. Xu, and C. A. J. Palmer

The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimization. Here, an automated, HRR-compatible system produced high-fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimization of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.

High Power Laser Science and Engineering
Mar. 27, 2023, Vol. 11 Issue 3 03000e35 (2023)
Optimization and control of synchrotron emission in ultraintense laser–solid interactions using machine learning
J. Goodman, M. King, E. J. Dolier, R. Wilson, R. J. Gray, and P. McKenna

The optimum parameters for the generation of synchrotron radiation in ultraintense laser pulse interactions with planar foils are investigated with the application of Bayesian optimization, via Gaussian process regression, to 2D particle-in-cell simulations. Individual properties of the synchrotron emission, such as the yield, are maximized, and simultaneous mitigation of bremsstrahlung emission is achieved with multi-variate objective functions. The angle-of-incidence of the laser pulse onto the target is shown to strongly influence the synchrotron yield and angular profile, with oblique incidence producing the optimal results. This is further explored in 3D simulations, in which additional control of the spatial profile of synchrotron emission is demonstrated by varying the polarization of the laser light. The results demonstrate the utility of applying a machine learning-based optimization approach and provide new insights into the physics of radiation generation in laser–foil interactions, which will inform the design of experiments in the quantum electrodynamics (QED)-plasma regime.

High Power Laser Science and Engineering
On the CoverFeb. 14, 2023, Vol. 11 Issue 3 03000e34 (2023)
Optical beat notes assisted attosecond soft X-ray pulse generation in high-gain free electron lasers
Zhen Wang, and Chao Feng

Attosecond soft X-ray pulses are of great importance for the study of ultrafast electronic phenomena. In this paper, a feasible method is proposed to generate isolated fully coherent attosecond soft X-ray free electron laser via optical frequency beating. Two optical lasers with the opposite frequency chirps are used to induce a gradient frequency energy modulation, which helps to generate a gradually varied spacing electron pulse train. Subsequently, the undulator sections with electron beam delay lines are used to amplify the target ultra-short radiation. Numerical start-to-end simulations have been performed and the results demonstrate that an isolated soft X-ray pulse with the peak power of 330 GW and pulse duration of 620 as can be achieved by the proposed technique.

High Power Laser Science and Engineering
Feb. 17, 2023, Vol. 11 Issue 3 03000e33 (2023)
Hyperspectral compressive wavefront sensing
Sunny Howard, Jannik Esslinger, Robin H. W. Wang, Peter Norreys, and Andreas Döpp

Presented is a novel way to combine snapshot compressive imaging and lateral shearing interferometry in order to capture the spatio-spectral phase of an ultrashort laser pulse in a single shot. A deep unrolling algorithm is utilized for snapshot compressive imaging reconstruction due to its parameter efficiency and superior speed relative to other methods, potentially allowing for online reconstruction. The algorithm’s regularization term is represented using a neural network with 3D convolutional layers to exploit the spatio-spectral correlations that exist in laser wavefronts. Compressed sensing is not typically applied to modulated signals, but we demonstrate its success here. Furthermore, we train a neural network to predict the wavefronts from a lateral shearing interferogram in terms of Zernike polynomials, which again increases the speed of our technique without sacrificing fidelity. This method is supported with simulation-based results. While applied to the example of lateral shearing interferometry, the methods presented here are generally applicable to a wide range of signals, including Shack–Hartmann-type sensors. The results may be of interest beyond the context of laser wavefront characterization, including within quantitative phase imaging.

High Power Laser Science and Engineering
Mar. 21, 2023, Vol. 11 Issue 3 03000e32 (2023)
High-energy, hundred-picosecond pulsed 266 nm mid-ultraviolet generation by a barium borate crystal
Ning Wen, Nan Wang, Nan Zong, Xue-Chun Lin, Hong-Wei Gao, Yong Bo, Qin-Jun Peng, Da-Fu Cui, and Zu-Yan Xu

We present a high-energy, hundred-picosecond (ps) pulsed mid-ultraviolet solid-state laser at 266 nm by a direct second harmonic generation (SHG) in a barium borate (BaB2O4, BBO) nonlinear crystal. The green pump source is a 710 mJ, 330 ps pulsed laser at a wavelength of 532 nm with a repetition rate of 1 Hz. Under a green pump energy of 710 mJ, a maximum output energy of 253.3 mJ at 266 nm is achieved with 250 ps pulse duration resulting in a peak power of more than 1 GW, corresponding to an SHG conversion efficiency of 35.7% from 532 to 266 nm. The experimental data were well consistent with the theoretical prediction. To the best of our knowledge, this laser exhibits both the highest output energy and highest peak power ever achieved in a hundred-ps/ps regime at 266 nm for BBO-SHG.

High Power Laser Science and Engineering
Mar. 03, 2023, Vol. 11 Issue 2 02000e31 (2023)
Post-compression of high-energy, sub-picosecond laser pulses
P.-G. Bleotu, J. Wheeler, S. Yu. Mironov, V. Ginzburg, M. Masruri, A. Naziru, R. Secareanu, D. Ursescu, F. Perez, J. De Sousa, D. Badarau, E. Veuillot, P. Audebert, E. Khazanov, and G. Mourou

The post-compression technique based on self-phase modulation of high-energy pulses leads to an increase in achievable peak power and intensity. Typically, the pulses considered in experiments have been less than 100 fs in duration. Here, the method is applied to the ELFIE laser system at the LULI facility, for a pulse of 7 J energy and an initial measured duration of 350 fs. A 5-mm-thick fused silica window and a 2 mm cyclic-olefin polymer were used as optical nonlinear materials. The 9 cm diameter beam was spectrally broadened to a bandwidth corresponding to 124 fs Fourier-limited pulse duration, and then it was partly post-compressed to 200 fs. After measuring the spatial spectra of the beam fluence, a uniform gain factor of 4 increase in the fluctuations over the studied range of frequencies is observed, due to small-scale self-focusing.

High Power Laser Science and Engineering
Feb. 16, 2023, Vol. 11 Issue 2 02000e30 (2023)
Tunable compact asynchronous optical sampling system using Er-doped fiber laser
Zilin Zhao, Daping Luo, Yang Liu, Zejiang Deng, Lian Zhou, Gehui Xie, Chenglin Gu, Yanzhao Yang, Bin Wu, and Wenxue Li

We report a compact, tunable, self-starting, all-fiber laser-based asynchronous optical sampling (ASOPS) system. Two Er-doped fiber oscillators were used as the pulsed-laser source, whose repetition rate could be set at 100 MHz with a tuning range of 1.25 MHz through a fiber delay line. By employing phase-locked and temperature control loops, the repetition rate offset of the two lasers was stabilized with 7.13 × 10-11 fractional instability at an average time of 1 s. Its capabilities in the terahertz regime were demonstrated by terahertz time-domain spectroscopy, achieving a spectral bandwidth of 3 THz with a dynamic range of 30 dB. The large range of repetition rate adjustment in our ASOPS system has the potential to be a powerful tool in the terahertz regime.

High Power Laser Science and Engineering
Mar. 03, 2023, Vol. 11 Issue 2 02000e29 (2023)
Suppressing small-scale self-focusing of high-power femtosecond pulses
Mikhail Martyanov, Vladislav Ginzburg, Alexey Balakin, Sergey Skobelev, Dmitry Silin, Anton Kochetkov, Ivan Yakovlev, Alexey Kuzmin, Sergey Mironov, Ilya Shaikin, Sergey Stukachev, Andrey Shaykin, Efim Khazanov, and Alexander Litvak

It was shown experimentally that for a 65-fs 17-J pulse, the effect of filamentation instability, also known as small-scale self-focusing, is much weaker than that predicted by stationary and nonstationary theoretical models for high B-integral values. Although this discrepancy has been left unexplained at the moment, in practice no signs of filamentation may allow a breakthrough in nonlinear pulse post-compression at high laser energy.

High Power Laser Science and Engineering
Feb. 27, 2023, Vol. 11 Issue 2 02000e28 (2023)
High-efficiency bismuth borate-based optical parametric chirped pulse amplifier with approximately 2.1 mJ, 38 fs output pulses at approximately 2150 nm
Augustinas Petrulėnas, Paulius Mackonis, and Aleksej M. Rodin

We present a compact and cost-effective mJ-level femtosecond laser system operating at a center wavelength of approximately 2.15 μm. An affordable two-stage ytterbium-doped yttrium aluminum garnet (Yb:YAG) chirped pulse amplifier provides more than 10 mJ, approximately 1.2 ps pulses at 1030 nm to pump a three-stage optical parametric chirped pulse amplifier (OPCPA) based on bismuth borate crystals and to drive the supercontinuum seed in the YAG crystal. The energy of the amplified pulses in the wavelength range of 1.95–2.4 μm reached 2.25 mJ with a pump-to-signal conversion efficiency of approximately 25% in the last OPCPA stage. These pulses were compressed to 38 fs in a pair of Suprasil 300 glass prisms.

High Power Laser Science and Engineering
Mar. 15, 2023, Vol. 11 Issue 2 02000e27 (2023)
Collimated gamma beams with high peak flux driven by laser-accelerated electrons
Lulin Fan, Tongjun Xu, Shun Li, Zhangli Xu, Jiancai Xu, Jianqiang Zhu, Baifei Shen, and Liangliang Ji

Laser-accelerated electrons are promising in producing gamma-photon beams of high peak flux for the study of nuclear photonics, obtaining copious positrons and exploring photon–photon interaction in vacuum. We report on the experimental generation of brilliant gamma-ray beams with not only high photon yield but also low divergence, based on picosecond laser-accelerated electrons. The 120 J 1 ps laser pulse drives self-modulated wakefield acceleration in a high-density gas jet and generates tens-of-MeV electrons with 26 nC and divergence as small as $1.51{}^{\circ}$ . These collimated electrons produce gamma-ray photons through bremsstrahlung radiation when transversing a high-Z solid target. We design a high-energy-resolution Compton-scattering spectrometer and find that a total photon number of $2.2\times {10}^9$ is captured within an acceptance angle of $1.1{}^{\circ}$ for photon energies up to $16\;\mathrm{MeV}$ . Comparison between the experimental results and Monte Carlo simulations illustrates that the photon beam inherits the small divergence from electrons, corresponding to a total photon number of $2.2\times {10}^{11}$ and a divergence of $7.73{}^{\circ}$ .

High Power Laser Science and Engineering
Mar. 21, 2023, Vol. 11 Issue 2 02000e26 (2023)
High-power femtosecond laser generation from an all-fiber linearly polarized chirped pulse amplifier
Tao Wang, Can Li, Bo Ren, Kun Guo, Jian Wu, Jinyong Leng, and Pu Zhou

An all-fiber high-power linearly polarized chirped pulse amplification (CPA) system is experimentally demonstrated. Through stretching the pulse duration to a full width of approximately 2 ns with two cascaded chirped fiber Bragg gratings (CFBGs), a maximum average output power of 612 W is achieved from a high-gain Yb-doped fiber that has a core diameter of 20 μm with a slope efficiency of approximately 68% at the repetition rate of 80 MHz. At the maximum output power, the polarization degree is 92.5% and the M2 factor of the output beam quality is approximately 1.29; the slight performance degradations are attributed to the thermal effects in the main amplifier. By optimizing the B-integral of the amplifier and finely adjusting the higher-order dispersion of one of the CFBGs, the pulse width is compressed to 863 fs at the highest power with a compression efficiency of 72%, corresponding to a maximum compressed average power of 440.6 W, single pulse energy of 5.5 μJ and peak power of about 4.67 MW. To the best of our knowledge, this is the highest average power of a femtosecond laser directly generated from an all-fiber linearly polarized CPA system.

High Power Laser Science and Engineering
Feb. 09, 2023, Vol. 11 Issue 2 02000e25 (2023)
Multibeam laser–plasma interaction at the Gekko XII laser facility in conditions relevant for direct-drive inertial confinement fusion
G. Cristoforetti, P. Koester, S. Atzeni, D. Batani, S. Fujioka, Y. Hironaka, S. Hüller, T. Idesaka, K. Katagiri, K. Kawasaki, R. Kodama, D. Mancelli, Ph. Nicolai, N. Ozaki, A. Schiavi, K. Shigemori, R. Takizawa, T. Tamagawa, D. Tanaka, A. Tentori, Y. Umeda, A. Yogo, and L. A. Gizzi

Laser–plasma interaction and hot electrons have been characterized in detail in laser irradiation conditions relevant for direct-drive inertial confinement fusion. The experiment was carried out at the Gekko XII laser facility in multibeam planar target geometry at an intensity of approximately $3\times {10}^{15}$ W/cm2. Experimental data suggest that high-energy electrons, with temperatures of 20–50 keV and conversion efficiencies of $\eta , were mainly produced by the damping of electron plasma waves driven by two-plasmon decay (TPD). Stimulated Raman scattering (SRS) is observed in a near-threshold growth regime, producing a reflectivity of approximately $0.01\%$ , and is well described by an analytical model accounting for the convective growth in independent speckles. The experiment reveals that both TPD and SRS are collectively driven by multiple beams, resulting in a more vigorous growth than that driven by single-beam laser intensity.

High Power Laser Science and Engineering
Feb. 20, 2023, Vol. 11 Issue 2 02000e24 (2023)
Versatile tape-drive target for high-repetition-rate laser-driven proton acceleration
N. Xu, M. J. V. Streeter, O. C. Ettlinger, H. Ahmed, S. Astbury, M. Borghesi, N. Bourgeois, C. B. Curry, S. J. D. Dann, N. P. Dover, T. Dzelzainis, V. Istokskaia, M. Gauthier, L. Giuffrida, G. D. Glenn, S. H. Glenzer, R. J. Gray, J. S. Green, G. S. Hicks, C. Hyland, M. King, B. Loughran, D. Margarone, O. McCusker, P. McKenna, C. Parisuaña, P. Parsons, C. Spindloe, D. R. Symes, F. Treffert, C. A. J. Palmer, and Z. Najmudin

We present the development and characterization of a high-stability, multi-material, multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz. The tape surface position was measured to be stable on the sub-micrometre scale, compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers ( $>$ kHz). Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods. The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team, with the exception of tape replacement, producing the largest data-set of relativistically intense laser–solid foil measurements to date. This tape drive provides robust targetry for the generation and study of high-repetition-rate ion beams using next-generation high-power laser systems, also enabling wider applications of laser-driven proton sources.

High Power Laser Science and Engineering
Mar. 21, 2023, Vol. 11 Issue 2 02000e23 (2023)
1.2 kW all-fiber narrow-linewidth picosecond MOPA system
Jiexi Zuo, Haijuan Yu, Shuzhen Zou, Zhiyong Dong, Chaojian He, Shuang Xu, Chaoyu Ning, Xuechun Chen, Xinyao Li, and Xuechun Lin

Achieving an all-fiber ultra-fast system with above kW average power and mJ pulse energy is extremely challenging. This paper demonstrated a picosecond monolithic master oscillator power amplifier system at a 25 MHz repetition frequency with an average power of approximately 1.2 kW, a pulse energy of approximately 48 μJ and a peak power of approximately 0.45 MW. The nonlinear effects were suppressed by adopting a dispersion stretched seed pulse (with a narrow linewidth of 0.052 nm) and a multi-mode master amplifier with an extra-large mode area; then an ultimate narrow bandwidth of 1.32 nm and a moderately broadened pulse of approximately 107 ps were achieved. Meanwhile, the great spatio-temporal stability was verified experimentally, and no sign of transverse mode instability appeared even at the maximum output power. The system has shown great power and energy capability with a sacrificed beam propagation product of 5.28 mm $\cdot$ mrad. In addition, further scaling of the peak power and pulse energy can be achieved by employing a lower repetition and a conventional compressor.

High Power Laser Science and Engineering
Mar. 23, 2023, Vol. 11 Issue 2 02000e22 (2023)
Parametric generation and phase locking of multiple sidebands in the regime of full-back-conversion
Wenhao Wang, Yudong Tao, Jingui Ma, Jing Wang, Peng Yuan, Dongfang Zhang, and Liejia Qian

Parametric interaction allows both forward and backward energy transfers among the three interacting waves. The back-conversion effect is usually detrimental when unidirectional energy transfer is desired. In this theoretical work, we manifest that the back-conversion effect underpins the direct generation of the picosecond pulse train without the need for a laser resonator. The research scenario is an optical parametric amplification (OPA) that consists of a second-order nonlinear medium, a quasi-continuous pump laser and a sinusoidal amplitude-modulated seed signal. The back-conversion of OPA can transfer the modulation peaks (valleys) of the incident signal into output valleys (peaks), which inherently induces spectral sidebands. The generation of each sideband is naturally accompanied with a phase shift of ±π. In the regime of full-back-conversion, the amount and amplitude of the sidebands reach the maximum simultaneously, and their phase constitutes an arithmetic sequence, leading to the production of a picosecond pulse train. The generated picosecond pulse train can have an ultrahigh repetition rate of 40 GHz or higher, which may facilitate ultrafast applications with ultrahigh speed.

High Power Laser Science and Engineering
Feb. 21, 2023, Vol. 11 Issue 2 02000e21 (2023)
Feasibility study of laser-driven neutron sources for pharmaceutical applications
Takato Mori, Akifumi Yogo, Yasunobu Arikawa, Takehito Hayakawa, Seyed R. Mirfayzi, Zechen Lan, Tianyun Wei, Yuki Abe, Mitsuo Nakai, Kunioki Mima, Hiroaki Nishimura, Shinsuke Fujioka, and Ryosuke Kodama

We predict the production yield of a medical radioisotope ${}^{67}$ Cu using ${}^{67}$ Zn(n, p) ${}^{67}$ Cu and ${}^{68}$ Zn(n, pn) ${}^{67}$ Cu reactions with fast neutrons provided from laser-driven neutron sources. The neutrons were generated by the p+ ${}^9\mathrm{Be}$ and d+ ${}^9$ Be reactions with high-energy ions accelerated by laser–plasma interaction. We evaluated the yield to be (3.3 $\pm$ 0.5) $\times$ 10 ${}^5$ atoms for ${}^{67}$ Cu, corresponding to a radioactivity of 1.0 $\pm$ 0.2 Bq, for a Zn foil sample with a single laser shot. Using a simulation with this result, we estimated ${}^{67}$ Cu production with a high-frequency laser. The result suggests that it is possible to generate ${}^{67}$ Cu with a radioactivity of 270 MBq using a future laser system with a frequency of 10 Hz and 10,000-s radiation in a hospital.

High Power Laser Science and Engineering
Editors' PickJan. 13, 2023, Vol. 11 Issue 2 02000e20 (2023)
Towards critical and supercritical electromagnetic fields
M. Marklund, T. G. Blackburn, A. Gonoskov, J. Magnusson, S. S. Bulanov, and A. Ilderton

The availability of ever stronger, laser-generated electromagnetic fields underpins continuing progress in the study and application of nonlinear phenomena in basic physical systems, ranging from molecules and atoms to relativistic plasmas and quantum electrodynamics. This raises the question: how far will we be able to go with future lasers? One exciting prospect is the attainment of field strengths approaching the Schwinger critical field ${E}_{\mathrm{cr}}$ in the laboratory frame, such that the field invariant ${E}^2-{c}^2{B}^2>{E}_{\mathrm{cr}}^2$ is reached. The feasibility of doing so has been questioned, on the basis that cascade generation of dense electron–positron plasma would inevitably lead to absorption or screening of the incident light. Here we discuss the potential for future lasers to overcome such obstacles, by combining the concept of multiple colliding laser pulses with that of frequency upshifting via a tailored laser–plasma interaction. This compresses the electromagnetic field energy into a region of nanometre size and attosecond duration, which increases the field magnitude at fixed power but also suppresses pair cascades. Our results indicate that laser facilities with peak power of tens of PW could be capable of reaching ${E}_{\mathrm{cr}}$ . Such a scenario opens up prospects for the experimental investigation of phenomena previously considered to occur only in the most extreme environments in the universe.

High Power Laser Science and Engineering
On the CoverJan. 05, 2023, Vol. 11 Issue 2 02000e19 (2023)
Single-frequency upconverted laser generation by phase summation
Xin Zeng, Shuzhen Cui, Huawei Jiang, Bowen Ruan, Xin Cheng, Jiaqi Zhou, Zhiquan Lin, Xuezong Yang, Weibiao Chen, and Yan Feng

The phase summation effect in sum-frequency mixing process is utilized to avoid a nonlinearity obstacle in the power scaling of single-frequency visible or ultraviolet lasers. Two single-frequency fundamental lasers are spectrally broadened by phase modulation to suppress stimulated Brillouin scattering in fiber amplifier and achieve higher power. After sum-frequency mixing in a nonlinear optical crystal, the upconverted laser returns to single frequency due to phase summation, when the phase modulations on two fundamental lasers have a similar amplitude but opposite sign. The method was experimentally proved in a Raman fiber amplifier-based laser system, which generated a power-scalable sideband-free single-frequency 590 nm laser. The proposal manifests the importance of phase operation in wave-mixing processes for precision laser technology.

High Power Laser Science and Engineering
Mar. 22, 2023, Vol. 11 Issue 2 02000e18 (2023)
A novel multi-shot target platform for laser-driven laboratory astrophysics experiments
Pablo Perez-Martin, Irene Prencipe, Manfred Sobiella, Fabian Donat, Ning Kang, Zhiyu He, Huiya Liu, Lei Ren, Zhiyong Xie, Jun Xiong, Yan Zhang, Florian-Emanuel Brack, Michal Červenák, Pavel Gajdoš, Lenka Hronová, Kakolee Kaniz, Michaela Kozlová, Florian Kroll, Xiayun Pan, Gabriel Schaumann, Sushil Singh, Michal Šmíd, Francisco Suzuki-Vidal, Panzheng Zhang, Jinren Sun, Jianqiang Zhu, Miroslav Krůs, and Katerina Falk

A new approach to target development for laboratory astrophysics experiments at high-power laser facilities is presented. With the dawn of high-power lasers, laboratory astrophysics has emerged as a field, bringing insight into physical processes in astrophysical objects, such as the formation of stars. An important factor for success in these experiments is targetry. To date, targets have mainly relied on expensive and challenging microfabrication methods. The design presented incorporates replaceable machined parts that assemble into a structure that defines the experimental geometry. This can make targets cheaper and faster to manufacture, while maintaining robustness and reproducibility. The platform is intended for experiments on plasma flows, but it is flexible and may be adapted to the constraints of other experimental setups. Examples of targets used in experimental campaigns are shown, including a design for insertion in a high magnetic field coil. Experimental results are included, demonstrating the performance of the targets.

High Power Laser Science and Engineering
Feb. 09, 2023, Vol. 11 Issue 2 02000e17 (2023)
High-power 1560 nm single-frequency erbium fiber amplifier core-pumped at 1480 nm – ERRATUM
Xin Cheng, Zhiquan Lin, Xuezong Yang, Shuizhen Cui, Xin Zeng, Huawei Jiang, and Yan Feng

High Power Laser Science and Engineering
Apr. 11, 2023, Vol. 11 Issue 2 02000e16 (2023)
Impact of temporal modulations on laser-induced damage of fused silica at 351 nm
C. Bouyer, R. Parreault, N. Roquin, J.-Y. Natoli, and L. Lamaignère

Laser-induced damage (LID) on high-power laser facilities is one of the limiting factors for the increase in power and energy. Inertial confinement fusion (ICF) facilities such as Laser Mégajoule or the National Ignition Facility use spectral broadening of the laser pulse that may induce power modulations because of frequency modulation to amplitude modulation conversion. In this paper, we study the impact of low and fast power modulations of laser pulses both experimentally and numerically. The MELBA experimental testbed was used to shape a wide variety of laser pulses and to study their impact on LID. A 1D Lagrangian hydrodynamic code was used to understand the impact of different power profiles on LID.

High Power Laser Science and Engineering
Dec. 27, 2022, Vol. 11 Issue 2 02000e15 (2023)
Short mid-infrared watt-level all-fiber nonlinear pulse compressor above 100-MHz pulse repetition rate
Jingcheng Shang, Chao Mei, Shengzhi Zhao, Yizhou Liu, Kejian Yang, Chun Wang, Tao Li, and Tianli Feng

We firstly report a 2-μm all-fiber nonlinear pulse compressor based on two pieces of normal dispersion fiber (NDF), which enables a high-power scaling ability of watt-level and a high pulse compression ratio of 13.7. With the NDF-based all-fiber nonlinear pulse compressor, the 450-fs laser pulses with a repetition rate of 101.4 MHz are compressed to 35.1 fs, corresponding to a 5.2 optical oscillation cycle at the 2-μm wavelength region. The output average power reaches 1.28 W, which is believed to be the highest value never achieved from the previous 2-μm all-fiber nonlinear pulse compressors with a high pulse repetition rate above 100 MHz. The dynamic evolution of the ultrafast pulse inside the all-fiber nonlinear pulse compressor is numerically analyzed, matching well with the experimental results.

High Power Laser Science and Engineering
Dec. 23, 2022, Vol. 11 Issue 1 01000e14 (2023)
Angle amplifier in a 2D beam scanning system based on peristrophic multiplexed volume Bragg gratings
Yuanzhi Dong, Yunxia Jin, Fanyu Kong, Jingyin Zhao, Jianwei Mo, Dongbing He, Jing Sun, and Jianda Shao

In this paper, a 2D angle amplifier based on peristrophic multiplexed volume Bragg gratings is designed and prepared, in which a calculation method is firstly proposed to optimize the number of channels to a minimum. The induction of peristrophic multiplexing reduces the performance difference in one bulk of the grating, whereas there is no need to deliberately optimize the fabrication process. It is revealed that a discrete 2D angle deflection range of ±30° is obtained and the relative diffraction efficiency of all the grating channels reaches more than 55% with a root-mean-square deviation of less than 3.4% in the same grating. The deviation of the Bragg incidence and exit angles from the expected values is less than 0.07°. It is believed that the proposed 2D angle amplifier has the potential to realize high-performance and large-angle beam steering in high-power laser beam scanning systems.

High Power Laser Science and Engineering
Jan. 05, 2023, Vol. 11 Issue 1 01000e13 (2023)
2.1 μm, high-energy dissipative soliton resonance from a holmium-doped fiber laser system
Desheng Zhao, Bin Zhang, Xiran Zhu, Shuailin Liu, Li Jiang, Zhiyuan Dou, Linyong Yang, and Jing Hou

We propose a 2.1 μm high-energy dissipative soliton resonant (DSR) fiber laser system based on a mode-locked seed laser and dual-stage amplifiers. In the seed laser, the nonlinear amplifying loop mirror technique is employed to realize mode-locking. The utilization of an in-band pump scheme and long gain fiber enables effectively exciting 2.1 μm pulses. A section of ultra-high numerical aperture fiber (UHNAF) with normal dispersion and high nonlinearity and an output coupler with a large coupling ratio are used to achieve a high-energy DSR system. By optimizing the UHNAF length to 55 m, a 2103.7 nm, 88.1 nJ DSR laser with a 3-dB spectral bandwidth of 0.48 nm and a pulse width of 17.1 ns is obtained under a proper intracavity polarization state and pump power. The output power and conversion efficiency are 0.233 W and 4.57%, respectively, both an order of magnitude higher than those of previously reported holmium-doped DSR seed lasers. Thanks to the high output power and nanosecond pulse width of the seed laser, the average power of the DSR laser is linearly scaled up to 50.4 W via a dual-stage master oscillator power amplifier system. The 3-dB spectral bandwidth broadens slightly to 0.52 nm, and no distortion occurs in the amplified pulse waveform. The corresponding pulse energy reaches 19.1 μJ, which is the highest pulse energy in a holmium-doped mode-locked fiber laser system to the best of our knowledge. Such a 2.1 μm, high-energy DSR laser with relatively wide pulse width has prospective applications in mid-infrared nonlinear frequency conversion.

High Power Laser Science and Engineering
Jan. 17, 2023, Vol. 11 Issue 1 01000e12 (2023)
High-peak-power random Yb-fiber laser with intracavity Raman-frequency comb generation
Xinxing Liu, Wenhui Hao, Zhihui Yang, and Yulong Tang

The random fiber laser (RFL) has been an excellent platform for exploring novel optical dynamics and developing new functional optoelectronic devices. However, it is challenging for RFLs to regulate their emission into regular narrow pulses due to their intrinsic randomness. Here, through engineering the laser configuration (cavity Q value, gain distribution and nonlinearity), we demonstrate that narrow (~2.5 ns) pulses with record peak power as high as 64.3 kW are achieved from a self-Q-switched random ytterbium fiber laser. Based on high intracavity intensity and efficient interplay of multiple nonlinear processes (stimulated Brillouin scattering, stimulated Raman scattering and four-wave mixing), an over-one-octave visible-near-infrared (NIR) Raman-frequency comb is generated from single-mode silica fibers for the first time. After spectrally filtering the Raman peaks, wavelength-tunable pulses with durations of several hundreds of picoseconds are obtained. Such a high-peak-power random Q-switched fiber laser and wide frequency comb in the visible-NIR region can find applications in diverse areas, such as spectroscopy, biomedical imaging and quantum information.

High Power Laser Science and Engineering
Dec. 15, 2022, Vol. 11 Issue 1 01000e11 (2023)
A 110 W fiber gas Raman laser at 1153 nm
Yulong Cui, Xin Tian, Binyu Rao, Hao Li, Wei Huang, Wenxi Pei, Meng Wang, Zilun Chen, and Zefeng Wang

We report here the first hundred-watt continuous wave fiber gas laser in H2-filled hollow-core photonic crystal fiber (PCF) by stimulated Raman scattering. The pump source is a homemade narrow-linewidth fiber oscillator with a 3 dB linewidth of 0.15 nm at the maximum output power of 380 W. To efficiently and stably couple several-hundred-watt pump power into the hollow core and seal the gas, a hollow-core fiber end-cap is fabricated and used at the input end. A maximum power of 110 W at 1153 nm is obtained in a 5 m long hollow-core PCF filled with 36 bar H2, and the conversion efficiency of the first Stokes power is around 48.9%. This work paves the way for high-power fiber gas Raman lasers.

High Power Laser Science and Engineering
Feb. 28, 2023, Vol. 11 Issue 1 01000e10 (2023)
Laser wakefield accelerator modelling with variational neural networks
M. J. V. Streeter, C. Colgan, C. C. Cobo, C. Arran, E. E. Los, R. Watt, N. Bourgeois, L. Calvin, J. Carderelli, N. Cavanagh, S. J. D. Dann, R. Fitzgarrald, E. Gerstmayr, A. S. Joglekar, B. Kettle, P. Mckenna, C. D. Murphy, Z. Najmudin, P. Parsons, Q. Qian, P. P. Rajeev, C. P. Ridgers, D. R. Symes, A. G. R. Thomas, G. Sarri, and S. P. D. Mangles

A machine learning model was created to predict the electron spectrum generated by a GeV-class laser wakefield accelerator. The model was constructed from variational convolutional neural networks, which mapped the results of secondary laser and plasma diagnostics to the generated electron spectrum. An ensemble of trained networks was used to predict the electron spectrum and to provide an estimation of the uncertainty of that prediction. It is anticipated that this approach will be useful for inferring the electron spectrum prior to undergoing any process that can alter or destroy the beam. In addition, the model provides insight into the scaling of electron beam properties due to stochastic fluctuations in the laser energy and plasma electron density.

High Power Laser Science and Engineering
Editors' PickJan. 06, 2023, Vol. 11 Issue 1 010000e9 (2023)
High-performance 800–1050 nm seed pulses based on spectral broadening and filtering for petawatt lasers
Wenhai Liang, Renjing Chen, Yilin Xu, Yaping Xuan, Peng Wang, Jun Liu, and Ruxin Li

High-performance 86 μJ, 11.2 fs pulses with a spectrum range of 800–1050 nm are generated based on 1030 nm, 190 fs Yb femtosecond pulses by using multi-plate-based spectral broadening and filtering. Taking advantage of single beam configuration, the obtained pulses have excellent power and spectral stabilities. Since the output spectrum is obtained by spectrally filtering the broadened components, the temporal contrast of the output pulses is enhanced by at least four orders of magnitude. Together with the robust and simple setup, the proposed method is expected to be a competitive option for the generation of seed pulses for 10s–100s petawatt lasers.

High Power Laser Science and Engineering
Jan. 06, 2023, Vol. 11 Issue 1 010000e8 (2023)
Applications of object detection networks in high-power laser systems and experiments
Jinpu Lin, Florian Haberstroh, Stefan Karsch, and Andreas Döpp

The recent advent of deep artificial neural networks has resulted in a dramatic increase in performance for object classification and detection. While pre-trained with everyday objects, we find that a state-of-the-art object detection architecture can very efficiently be fine-tuned to work on a variety of object detection tasks in a high-power laser laboratory. In this paper, three exemplary applications are presented. We show that the plasma waves in a laser–plasma accelerator can be detected and located on the optical shadowgrams. The plasma wavelength and plasma density are estimated accordingly. Furthermore, we present the detection of all the peaks in an electron energy spectrum of the accelerated electron beam, and the beam charge of each peak is estimated accordingly. Lastly, we demonstrate the detection of optical damage in a high-power laser system. The reliability of the object detector is demonstrated over 1000 laser shots in each application. Our study shows that deep object detection networks are suitable to assist online and offline experimental analysis, even with small training sets. We believe that the presented methodology is adaptable yet robust, and we encourage further applications in Hz-level or kHz-level high-power laser facilities regarding the control and diagnostic tools, especially for those involving image data.

High Power Laser Science and Engineering
On the CoverJan. 13, 2023, Vol. 11 Issue 1 010000e7 (2023)
Diode-pumped high-power continuous-wave intracavity frequency-doubled Pr3+:YLF ultraviolet lasers around 349 nm
Xiuji Lin, Zheng Zhang, Shuaihao Ji, Run Fang, Bo Xiao, Huiying Xu, and Zhiping Cai

High-power continuous-wave ultraviolet lasers are useful for many applications. As ultraviolet laser sources, the wavelength switching capability and compact structure are very important to extend the applicability and improve the flexibility in practical applications. In this work, we present two simple and relatively compact schemes by laser diode pumping to obtain a watt-level single-wavelength 348.7-nm laser and discrete wavelength tunable ultraviolet lasers around 349 nm (from 334.7 to 364.5 nm) by intracavity frequency doubling based on Pr3+:YLF and $\unicode{x3b2}$ -BBO crystals. The maximum output power of the single-wavelength 348.7-nm laser is 1.033 W. The output powers of the discrete wavelength tunable lasers are at the level of tens of milliwatts, except for two peaks at 348.7 and 360.3 nm with output powers of approximately 500 mW. In addition, simulations are carried out to explain the experimental results and clarify the tuning mechanisms.

High Power Laser Science and Engineering
Dec. 05, 2022, Vol. 11 Issue 1 010000e6 (2023)
Ultra-broadband pulse generation via hollow-core fiber compression and frequency doubling for ultra-intense lasers
Yanyan Li, Beijie Shao, Yujie Peng, Junyu Qian, Wenkai Li, Xinliang Wang, Xingyan Liu, Xiaoming Lu, Yi Xu, Yuxin Leng, and Ruxin Li

We demonstrate an ultra-broadband high temporal contrast infrared laser source based on cascaded optical parametric amplification, hollow-core fiber (HCF) and second harmonic generation processes. In this setup, the spectrum of an approximately 1.8 μm laser pulse has near 1 μm full bandwidth by employing an argon gas-filled HCF. Subsequently, after frequency doubling with cascaded crystals and dispersion compensation by a fused silica wedge pair, 9.6 fs (~3 cycles) and 150 μJ pulses centered at 910 nm with full bandwidth of over 300 nm can be generated. The energy stability of the output laser pulse is excellent with 0.8% (root mean square) over 20 min, and the temporal contrast is >1012 at –10 ps before the main pulse. The excellent temporal and spatial characteristics and stability make this laser able to be used as a good seed source for ultra-intense and ultrafast laser systems.

High Power Laser Science and Engineering
Jan. 11, 2023, Vol. 11 Issue 1 010000e5 (2023)
A 100-PW compressor based on single-pass single-grating pair
Shuman Du, Xiong Shen, Wenhai Liang, Peng Wang, Jun Liu, and Ruxin Li

A multistep pulse compressor (MPC) based on a single-pass single-grating pair (SSGP) is proposed to simplify the entire multi-petawatt (PW) compressor. Only one grating pair with relatively long perpendicular distance is used to generate the same amount of spectral chirp compared with a four-grating main compressor. As SSGP compressor induces the largest spatial chirp, it can introduce the best beam-smoothing effect to the laser beam on the last grating. When considering the diffraction loss of only two gratings, the total compression efficiency of the SSGP compressor is even larger than that of a four-grating main compressor. Furthermore, the wavefront aberration induced by the SSGP compressor can be better compensated by using deformable mirrors; however, it is difficult or complicated to be well compensated in a four-grating compressor. Approximately 50–100 PW laser pulses can be obtained using this SSGP-based multistage-smoothing MPC with a single laser beam.

High Power Laser Science and Engineering
Jan. 13, 2023, Vol. 11 Issue 1 010000e4 (2023)
High-power 1560 nm single-frequency erbium fiber amplifier core-pumped at 1480 nm
Xin Cheng, Zhiquan Lin, Xuezong Yang, Shuizhen Cui, Xin Zeng, Huawei Jiang, and Yan Feng

High-power continuous-wave single-frequency Er-doped fiber amplifiers at 1560 nm by in-band and core pumping of a 1480 nm Raman fiber laser are investigated in detail. Both co- and counter-pumping configurations are studied experimentally. Up to 59.1 W output and 90% efficiency were obtained in the fundamental mode and linear polarization in the co-pumped case, while less power and efficiency were achieved in the counter-pumped setup for additional loss. The amplifier performs indistinguishably in terms of laser linewidth and relative intensity noise in the frequency range up to 10 MHz for both configurations. However, the spectral pedestal is raised in co-pumping, caused by cross-phase modulation between the pump and signal laser, which is observed and analyzed for the first time. Nevertheless, the spectral pedestal is 34.9 dB below the peak, which has a negligible effect for most applications.

High Power Laser Science and Engineering
Jan. 17, 2023, Vol. 11 Issue 1 010000e3 (2023)
Demonstration of a petawatt-scale optical parametric chirped pulse amplifier based on yttrium calcium oxyborate
Meizhi Sun, Jun Kang, Xiao Liang, Haidong Zhu, Qingwei Yang, Qi Gao, Ailin Guo, Ping Zhu, Panzheng Zhang, Linjun Li, Lijuan Qiu, Zhantao Lu, Sheng Wang, Xiaoniu Tu, Xinglong Xie, and Jianqiang Zhu

As optical parametric chirped pulse amplification has been widely adopted for the generation of extreme intensity laser sources, nonlinear crystals of large aperture are demanded for high-energy amplifiers. Yttrium calcium oxyborate (YCa4O(BO3)3, YCOB) is capable of being grown with apertures exceeding 100 mm, which makes it possible for application in systems of petawatt scale. In this paper, we experimentally demonstrated for the first time to our knowledge, an ultra-broadband non-collinear optical parametric amplifier with YCOB for petawatt-scale compressed pulse generation at 800 nm. Based on the SG-II 5 PW facility, amplified signal energy of approximately 40 J was achieved and pump-to-signal conversion efficiency was up to 42.3%. A gain bandwidth of 87 nm was realized and supported a compressed pulse duration of 22.3 fs. The near-field and wavefront aberration represented excellent characteristics, which were comparable with those achieved in lithium triborate-based amplifiers. These results verified the great potential for YCOB utilization in the future.

High Power Laser Science and Engineering
Jan. 23, 2023, Vol. 11 Issue 1 010000e2 (2023)
High temporal contrast 1053 nm laser source based on optical parametric amplification and second-harmonic generation
Liya Shen, Yanyan Li, Wenkai Li, Jiajun Song, Junyu Qian, Jianyu Sun, Renyu Feng, Yujie Peng, and Yuxin Leng

Temporal contrast directly affects the interaction between ultraintense and ultrashort pulse lasers with matter. Seed laser sources with broad bandwidth and high temporal contrast are significant for overall temporal contrast enhancement. The technique of cascaded nonlinear processes with optical parametric amplification and second-harmonic generation is demonstrated for high temporal contrast seed source generation. Within 40 ps before the main pulse, the temporal contrast reaches over 1011. The pulse energy and duration of the high-contrast pulse are 112 μJ and 70 fs, respectively. Considering its high beam quality and stability, this laser source can serve as a high-quality seed for Nd:glass-based ultraintense and ultrashort pulse laser facilities.

High Power Laser Science and Engineering
Jan. 25, 2023, Vol. 11 Issue 1 010000e1 (2023)
Intense harmonic generation driven by a relativistic spatiotemporal vortex beam
Lingang Zhang, Liangliang Ji, and Baifei Shen

Spatiotemporal optical vortex (STOV) pulses carrying purely transverse intrinsic orbital angular momentum (TOAM) are attracting increasing attention because the TOAM provides a new degree of freedom to characterize light–matter interactions. In this paper, using particle-in-cell simulations, we present spatiotemporal high-harmonic generation in the relativistic region, driven by an intense STOV beam impinging on a plasma target. It is shown that the plasma surface acts as a spatial–temporal-coupled relativistic oscillating mirror with various frequencies. The spatiotemporal features are satisfactorily transferred to the harmonics such that the TOAM scales with the harmonic order. Benefitting from the ultrahigh damage threshold of the plasma over the optical media, the intensity of the harmonics can reach the relativistic region. This study provides a new approach for generating intense spatiotemporal extreme ultraviolet vortices and investigating STOV light–matter interactions at relativistic intensities.

High Power Laser Science and Engineering
Dec. 05, 2022, Vol. 10 Issue 6 06000e46 (2022)
Electron pulse train accelerated by a linearly polarized Laguerre–Gaussian laser beam
Yin Shi, David R. Blackman, Ping Zhu, and Alexey Arefiev

A linearly polarized Laguerre–Gaussian (LP-LG) laser beam with a twist index $l = -1$ has field structure that fundamentally differs from the field structure of a conventional linearly polarized Gaussian beam. Close to the axis of the LP-LG beam, the longitudinal electric and magnetic fields dominate over the transverse components. This structure offers an attractive opportunity to accelerate electrons in vacuum. It is shown, using three-dimensional particle-in-cell simulations, that this scenario can be realized by reflecting an LP-LG laser off a plasma with a sharp density gradient. The simulations indicate that a 600 TW LP-LG laser beam effectively injects electrons into the beam during the reflection. The electrons that are injected close to the laser axis experience a prolonged longitudinal acceleration by the longitudinal laser electric field. The electrons form distinct monoenergetic bunches with a small divergence angle. The energy in the most energetic bunch is 0.29 GeV. The bunch charge is 6 pC and its duration is approximately $270$ as. The divergence angle is just ${0.57}^{\circ }$ (10 mrad). By using a linearly polarized rather than a circularly polarized Laguerre–Gaussian beam, our scheme makes it easier to demonstrate the electron acceleration experimentally at a high-power laser facility.

High Power Laser Science and Engineering
On the CoverNov. 11, 2022, Vol. 10 Issue 6 06000e45 (2022)
Transverse mode instability mitigation in a high-power confined-doped fiber amplifier with good beam quality through seed laser control
Hanshuo Wu, Haobo Li, Yi An, Ruixian Li, Xiao Chen, Hu Xiao, Liangjin Huang, Huan Yang, Zhiping Yan, Jinyong Leng, Zhiyong Pan, and Pu Zhou

In this work, a confined-doped fiber with the core/inner-cladding diameter of 40/250 μm and a relative doping ratio of 0.75 is fabricated through a modified chemical vapor deposition method combined with the chelate gas deposition technique, and subsequently applied in a tandem-pumped fiber amplifier for high-power operation and transverse mode instability (TMI) mitigation. Notably, the impacts of the seed laser power and mode purity are preliminarily investigated through comparative experiments. It is found that the TMI threshold could be significantly affected by the seed laser mode purity. The possible mechanism behind this phenomenon is proposed and revealed through comprehensive comparative experiments and theoretical analysis. Finally, a maximum output power of 7.49 kW is obtained with the beam quality factor of approximately 1.83, which is the highest output power ever reported in a forward tandem-pumped confined-doped fiber amplifier. This work could provide a good reference and practical solution to improve the TMI threshold and realize high-power high-brightness fiber lasers.

High Power Laser Science and Engineering
Nov. 11, 2022, Vol. 10 Issue 6 06000e44 (2022)
Large temporal window and high-resolution single-shot cross-correlator with two separate measurement channels
Jingui Ma, Xiaoping Ouyang, Liangze Pan, Peng Yuan, Dongfang Zhang, Jing Wang, Guoqiang Xie, Jianqiang Zhu, and Liejia Qian

In strong-field physics experiments with ultraintense lasers, a single-shot cross-correlator (SSCC) is essential for fast optimization of the pulse contrast and meaningful comparison with theory for each pulse shot. To simultaneously characterize an ultrashort pulse and its long pedestal, the SSCC device must have both a high resolution and a large temporal window. However, the resolution and window in all kinds of single-shot measurement contradict each other in principle. Here we propose and demonstrate a novel SSCC device with two separate measurement channels: channel-1 for the large-window pedestal measurement has a moderate resolution but a large window, while channel-2 for the ultrashort pulse measurement has a small window but a high resolution; this allows the accurate characterization of the pulse contrast in a single shot. A two-channel SSCC device with a 200-fs resolution and 114-ps window has been developed and tested for its application in ultraintense lasers at 800 nm.

High Power Laser Science and Engineering
Nov. 11, 2022, Vol. 10 Issue 6 06000e43 (2022)
Multilayer dielectric grating pillar-removal damage induced by a picosecond laser
Kun Shuai, Xiaofeng Liu, Yuanan Zhao, Keqiang Qiu, Dawei Li, He Gong, Jian Sun, Li Zhou, Youen Jiang, Yaping Dai, Jianda Shao, and Zhilin Xia

Multilayer dielectric gratings typically remove multiple-grating pillars after picosecond laser irradiation; however, the dynamic formation process of the removal is still unclear. In this study, the damage morphologies of multilayer dielectric gratings induced by an 8.6-ps laser pulse were closely examined. The damage included the removal of a single grating pillar and consecutive adjacent grating pillars and did not involve the destruction of the internal high-reflection mirror structure. Comparative analysis of the two damage morphological characteristics indicated the removal of adjacent pillars was related to an impact process caused by the eruption of localized materials from the left-hand pillar, exerting impact pressure on its adjacent pillars and eventually resulting in multiple pillar removal. A finite-element strain model was used to calculate the stress distribution of the grating after impact. According to the electric field distribution, the eruptive pressure of the dielectric materials after ionization was also simulated. The results suggest that the eruptive pressure resulted in a stress concentration at the root of the adjacent pillar that was sufficient to cause damage, corresponding to the experimental removal of the adjacent pillar from the root. This study provides further understanding of the laser-induced damage behavior of grating pillars and some insights into reducing the undesirable damage process for practical applications.

High Power Laser Science and Engineering
Nov. 11, 2022, Vol. 10 Issue 6 06000e42 (2022)
Grating-free 2.8 μm Er:ZBLAN fiber chirped pulse amplifier
Yicheng Zhou, Zhipeng Qin, Xiabing Zhou, and Guoqiang Xie

We report on a grating-free fiber chirped pulse amplifier (CPA) at 2.8 μm for the first time. The CPA system adopted Er:ZBLAN fiber with large anomalous dispersion as the stretcher and germanium (Ge) rods as the compressor with a compact structure. High-energy picosecond pulses of 2.07 μJ were generated at the repetition rate of 100 kHz. Using highly dispersive Ge rods, the amplified pulses were compressed to 408 fs with a pulse energy of 0.57 μJ, resulting in a peak power of approximately 1.4 MW. A spectral broadening phenomenon in the main amplifier was observed, which was caused by the special gain shape of the Er:ZBLAN fiber amplifier in operation and confirmed by our numerical simulation. This compact fiber CPA system at 2.8 μm will be practical and meaningful for application fields.

High Power Laser Science and Engineering
Nov. 17, 2022, Vol. 10 Issue 6 06000e41 (2022)
Gain-switched watt-level thulium-doped fiber laser and amplifier operating at 1.7 μm
Yang Xiao, Xusheng Xiao, Lutao Liu, and Haitao Guo

A 1.7 μm gain-switched thulium-doped all-fiber laser with a master oscillator power amplifier (MOPA) configuration, utilizing a bandpass fiber filter and a 1550 nm erbium/ytterbium-codoped fiber MOPA, is demonstrated. The influences of pump pulse parameters (repetition rate and pulse duration) and laser cavity structures (ring and linear) on the laser performances were experimentally investigated. To the best of our knowledge, the power quenching and drop were observed in the 1.7 μm gain-switched thulium-doped fiber lasers for the first time, resulting from the mode-locked-resembling operation and nonlinear effects. Moreover, the fiber ring-cavity laser was more stable than the linear-cavity laser in the time domain and power. Finally, a laser with a maximum average power of 1.687 W, a slope efficiency of 19.7%, a single-pulse energy of 16.87 μJ, a pulse width of 425 ns, a repetition rate of 100 kHz and a peak power of 39.69 W was obtained.

High Power Laser Science and Engineering
Nov. 13, 2022, Vol. 10 Issue 6 06000e40 (2022)
Effects of second-order dispersion of ultrashort laser pulse on stimulated Raman scattering
Yanqing Deng, Dongning Yue, Mufei Luo, Xu Zhao, Yaojun Li, Xulei Ge, Feng Liu, Suming Weng, Min Chen, Xiaohui Yuan, and Jie Zhang

The influence of second-order dispersion (SOD) on stimulated Raman scattering (SRS) in the interaction of an ultrashort intense laser with plasma was investigated. More significant backward SRS was observed with the increase of the absolute value of SOD ($\mid \kern-1pt\!{\psi}_2\!\kern-1pt\mid$). The integrated intensity of the scattered light is positively correlated to the driver laser pulse duration. Accompanied by the side SRS, filaments with different angles along the laser propagation direction were observed in the transverse shadowgraph. A model incorporating Landau damping and above-threshold ionization was developed to explain the SOD-dependent angular distribution of the filaments.

High Power Laser Science and Engineering
Nov. 11, 2022, Vol. 10 Issue 6 06000e39 (2022)
Dispersion management for a 100 PW level laser using a mismatched-grating compressor
Fenxiang Wu, Jiabing Hu, Xingyan Liu, Zongxin Zhang, Peile Bai, Xinliang Wang, Yang Zhao, Xiaojun Yang, Yi Xu, Cheng Wang, Yuxin Leng, and Ruxin Li

We report dispersion management based on a mismatched-grating compressor for a 100 PW level laser, which utilizes optical parametric chirped pulse amplification and also features large chirped pulse duration and an ultra-broadband spectrum. The numerical calculation indicates that amplified pulses with 4 ns chirped pulse duration and 210 nm spectral bandwidth can be directly compressed to sub-13 fs, which is close to the Fourier-transform limit (FTL). More importantly, the tolerances of the mismatched-grating compressor to the misalignment of the stretcher, the error of the desired grating groove density and the variation of material dispersion are comprehensively analyzed, which is crucially important for its practical application. The results demonstrate that good tolerances and near-FTL compressed pulses can be achieved simultaneously, just by keeping a balance between the residual second-, third- and fourth-order dispersions in the laser system. This work can offer a meaningful guideline for the design and construction of 100 PW level lasers.

High Power Laser Science and Engineering
Editors' PickNov. 08, 2022, Vol. 10 Issue 6 06000e38 (2022)
Designing a toroidal crystal for monochromatic X-ray imaging of a laser-produced He-like plasma
Miao Li, Tong Yao, Zuhua Yang, Jun Shi, Feng Wang, Guohong Yang, Minxi Wei, Ao Sun, and Yang Li

In this study, a toroidal quartz ( $20\overline{2}3$ ) crystal is designed for monochromatic X-ray imaging at 72.3°. The designed crystal produces excellent images of a laser-produced plasma emitting He-like Ti X-rays at 4.75 keV. Based on the simulations, the imaging resolutions of the spherical and toroidal crystals in the sagittal direction are found to be 15 and 5 μm, respectively. Moreover, the simulation results show that a higher resolution image of the source can be obtained by using a toroidal crystal. An X-ray backlight imaging experiment is conducted using 4.75 keV He-like Ti X-rays, a 3 × 3 metal grid, an imaging plate and a toroidal quartz crystal with a lattice constant of 2d = 0.2749 nm. The meridional and sagittal radii of the toroidal α-quartz crystal are 295.6 and 268.5 mm, respectively. A highly resolved image of the microgrid, with a spatial resolution of 10 μm, is obtained in the experiment. By using similar toroidal crystal designs, the application of a spatially resolved spectrometer with high-resolution X-ray imaging ability is capable of providing imaging data with the same magnification ratio in the sagittal and meridional planes.

High Power Laser Science and Engineering
Sep. 26, 2022, Vol. 10 Issue 6 06000e37 (2022)
Record power and efficient mid-infrared supercontinuum generation in germania fiber with high stability
Linyong Yang, Yukun Yang, Bin Zhang, Xiran Zhu, Desheng Zhao, Shuailin Liu, and Jing Hou

We report the demonstration of a mid-infrared (MIR) supercontinuum (SC) laser delivering a record-breaking average output power of more than 40 W with a long-wavelength edge up to 3.5 μm. The all-fiberized configuration was composed of a thulium-doped fiber amplifier system emitting a broadband spectrum covering 1.9–2.6 μm with pulse repetition rate of 3 MHz, and a short piece of germania fiber. A 41.9 W MIR SC with a whole spectrum of 1.9–3.5 μm was generated in a piece of 0.2-m-long germania fiber, with a power conversion efficiency of 71.4%. For an even shorter germania fiber (0.1 m), an SC with even higher output power of 44.9 W (corresponding to a conversion efficiency of 76.5%) was obtained, but the energy conversion toward the long-wavelength region was slightly limited. A continuous operation for 1 hour with output power of 32.6 W showed outstanding power stability (root mean square 0.17%) of the obtained SC laser. To the best of the authors’ knowledge, for the first time, this work demonstrates the feasibility of germania fiber on generating a 40-W level MIR SC with high efficiency and excellent power stability, paving the way to real applications requiring high power and high reliability of MIR SC lasers.

High Power Laser Science and Engineering
Sep. 26, 2022, Vol. 10 Issue 6 06000e36 (2022)
High laser damage threshold reflective optically addressed liquid crystal light valve based on gallium nitride conductive electrodes
Zhibo Xing, Wei Fan, Dajie Huang, He Cheng, and Tongyao Du

In this paper, the feasibility of a high laser damage threshold liquid crystal spatial light modulator based on gallium nitride (GaN) transparent conductive electrodes is proved. The laser-induced damage threshold (LIDT) is measured, and a high LIDT reflective optically addressed liquid crystal light valve (OALCLV) based on GaN is designed and fabricated. The proper work mode of the OALCLV is determined; the OALCLV obtained a maximum reflectivity of about 55% and an on–off ratio of 55:1, and an image response is demonstrated.

High Power Laser Science and Engineering
Aug. 24, 2022, Vol. 10 Issue 6 06000e35 (2022)
How the laser beam size conditions the temporal contrast in pulse stretchers of chirped-pulse amplification lasers
Simon Roeder, Yannik Zobus, Christian Brabetz, and Vincent Bagnoud

In this work, we propose and verify experimentally a model that describes the concomitant influence of the beam size and optical roughness on the temporal contrast of optical pulses passing through a pulse stretcher in chirped-pulse amplification laser systems. We develop an analytical model that is capable of predicting the rising edge caused by the reflection from an optical element in a pulse stretcher, based on the power spectral density of the surface and the spatial beam profile on the surface. In an experimental campaign, we characterize the temporal contrast of a laser pulse that passed through either a folded or an unfolded stretcher design and compare these results with the analytical model. By varying the beam size for both setups, we verify that optical elements in the near- and the far-field act opposed to each with respect to the temporal contrast and that the rising edge caused by a surface benefits from a larger spatial beam size on that surface.

High Power Laser Science and Engineering
Aug. 04, 2022, Vol. 10 Issue 6 06000e34 (2022)
Micro-size picosecond-duration fast neutron source driven by a laser–plasma wakefield electron accelerator
Yaojun Li, Jie Feng, Wenzhao Wang, Junhao Tan, Xulei Ge, Feng Liu, Wenchao Yan, Guoqiang Zhang, Changbo Fu, and Liming Chen

A pulsed fast neutron source is critical for applications of fast neutron resonance radiography and fast neutron absorption spectroscopy. However, due to the large transversal source size (of the order of mm) and long pulse duration (of the order of ns) of traditional pulsed fast neutron sources, it is difficult to realize high-contrast neutron imaging with high spatial resolution and a fine absorption spectrum. Here, we experimentally present a micro-size ultra-short pulsed neutron source by a table-top laser–plasma wakefield electron accelerator driving a photofission reaction in a thin metal converter. A fast neutron source with source size of approximately 500 μm and duration of approximately 36 ps has been driven by a tens of MeV, collimated, micro-size electron beam via a hundred TW laser facility. This micro-size ultra-short pulsed neutron source has the potential to improve the energy resolution of a fast neutron absorption spectrum dozens of times to, for example, approximately 100 eV at 1.65 MeV, which could be of benefit for high-quality fast neutron imaging and deep understanding of the theoretical model of neutron physics.

High Power Laser Science and Engineering
Oct. 03, 2022, Vol. 10 Issue 5 05000e33 (2022)
Forty-five terawatt vortex ultrashort laser pulses from a chirped-pulse amplification system
Zhenkuan Chen, Shuiqin Zheng, Xiaoming Lu, Xinliang Wang, Yi Cai, Congying Wang, Maijie Zheng, Yuexia Ai, Yuxin Leng, Shixiang Xu, and Dianyuan Fan

We report on a vortex laser chirped-pulse amplification (CPA) system that delivers pulses with a peak power of 45 TW. A focused intensity exceeding 1019 W/cm2 has been demonstrated for the first time by the vortex amplification scheme. Compared with other schemes of strong-field vortex generation with high energy flux but narrowband vortex-converting elements at the end of the laser, an important advantage of our scheme is that we can use a broadband but size-limited q-plate to realize broadband mode-converting in the front end of the CPA system, and achieve high-power amplification with a series of amplifiers. This method is low cost and can be easily implemented in an existing laser system. The results have verified the feasibility to obtain terawatt and even petawatt vortex laser amplification by a CPA system, which has important potential applications in strong-field laser physics, for example, generation of vortex particle beams with orbital angular momentum, fast ignition for inertial confinement fusion and simulation of the extreme astrophysical environment.

High Power Laser Science and Engineering
Aug. 05, 2022, Vol. 10 Issue 5 05000e32 (2022)
A computational study on the optical shaping of gas targets via blast wave collisions for magnetic vortex acceleration
I. Tazes, S. Passalidis, E. Kaselouris, I. Fitilis, M. Bakarezos, N. A. Papadogiannis, M. Tatarakis, and V. Dimitriou

This research work emphasizes the capability of delivering optically shaped targets through the interaction of nanosecond laser pulses with high-density gas-jet profiles, and explores proton acceleration in the near-critical density regime via magnetic vortex acceleration (MVA). Multiple blast waves (BWs) are generated by laser pulses that compress the gas-jet into near-critical steep gradient slabs of a few micrometres thickness. Geometrical alternatives for delivering the laser pulses into the gas target are explored to efficiently control the characteristics of the density profile. The shock front collisions of the generated BWs are computationally studied by 3D magnetohydrodynamic simulations. The efficiency of the proposed target shaping method for MVA is demonstrated for TW-class lasers by a particle-in-cell simulation.

High Power Laser Science and Engineering
On the CoverJul. 13, 2022, Vol. 10 Issue 5 05000e31 (2022)
A nodule dome removal strategy to improve the laser-induced damage threshold of coatings
Tianbao Liu, Meiping Zhu, Wenyun Du, Jun Shi, Jian Sun, Yingjie Chai, and Jianda Shao

Various coatings in high-power laser facilities suffer from laser damage due to nodule defects. We propose a nodule dome removal (NDR) strategy to eliminate unwanted localized electric-field (E-field) enhancement caused by nodule defects, thereby improving the laser-induced damage threshold (LIDT) of laser coatings. It is theoretically demonstrated that the proposed NDR strategy can reduce the localized E-field enhancement of nodules in mirror coatings, polarizer coatings and beam splitter coatings. An ultraviolet (UV) mirror coating is experimentally demonstrated using the NDR strategy. The LIDT is improved to about 1.9 and 2.2 times for the UV mirror coating without artificial nodules and the UV mirror coating with artificial nodule seeds with a diameter of 1000 nm, respectively. The NDR strategy, applicable to coatings prepared by different deposition methods, improves the LIDT of laser coating without affecting other properties, such as the spectrum, stress and surface roughness, indicating its broad applicability in high-LIDT laser coatings.

High Power Laser Science and Engineering
Sep. 12, 2022, Vol. 10 Issue 5 05000e30 (2022)
Femtosecond infrared optical vortex lasers based on optical parametric amplification
Renyu Feng, Junyu Qian, Yujie Peng, Yanyan Li, Wenkai Li, Yuxin Leng, and Ruxin Li

Infrared femtosecond optical vortices open up many new research fields, such as optical micro–nano manipulation, time-resolved nonlocal spectroscopy in solids, vortex secondary radiation and particle generations. In this article, we demonstrate a femtosecond optical vortex laser system based on a two-stage optical parametric amplifier. In our experiment, 1.45 μm vortex signal pulses with energy of 190 μJ and 1.8 μm vortex idler pulses with energy of 158 μJ have been obtained, and the pulse durations are 51 and 48 fs, respectively. Both the energy fluctuations of the signal and idler pulses are less than 0.5% (root mean square), and the spectral fluctuations are less than 1.5% within 1 hour. This type of highly stable femtosecond optical vortex laser has a wide range of applications for vortex strong-field physics.

High Power Laser Science and Engineering
Aug. 24, 2022, Vol. 10 Issue 5 05000e29 (2022)
Temporal contrast enhancement by nonlinear elliptical polarization rotation in a multi-pass cell
Jiajun Song, Liya Shen, Jianyu Sun, Yujie Peng, and Yuxin Leng

We demonstrate the simultaneous temporal contrast improvement and pulse compression of a Yb-doped femtosecond laser via nonlinear elliptical polarization rotation in a solid state multi-pass cell. The temporal contrast is improved to 109, while the pulse is shortened from 181 to 36 fs, corresponding to a compression factor of 5. The output beam features excellent beam quality with M2 values of 1.18 × 1.16. The total efficiency of the contrast enhancement system exceeds 50%. This technique will have wide applications in high temporal contrast ultra-intense femtosecond lasers.

High Power Laser Science and Engineering
Sep. 01, 2022, Vol. 10 Issue 5 05000e28 (2022)
Photon energy transfer on titanium targets for laser thrusters
A. Marcu, M. Stafe, M. Barbuta, R. Ungureanu, M. Serbanescu, B. Calin, and N. Puscas

Using two infrared pulsed lasers systems, a picosecond solid-state Nd:YAG laser with tuneable repetition rate (400 kHz–1 MHz) working in the burst mode of a multi-pulse train and a femtosecond Ti:sapphire laser amplifier with tuneable pulse duration in the range of tens of femtoseconds up to tens of picoseconds, working in single-shot mode (TEWALASS facility from CETAL-NILPRP), we have investigated the optimal laser parameters for kinetic energy transfer to a titanium target for laser-thrust applications. In the single-pulse regime, we controlled the power density by changing both the duration and pulse energy. In the multi-pulse regime, the train’s number of pulses (burst length) and the pulse energy variation were investigated. Heat propagation and photon reflection-based models were used to simulate the obtained experimental results. In the single-pulse regime, optimal kinetic energy transfer was obtained for power densities of about 500 times the ablation threshold corresponding to the specific laser pulse duration. In multi-pulse regimes, the optimal number of pulses per train increases with the train frequency and decreases with the pulse power density. An ideal energy transfer efficiency resulting from our experiments and simulations is close to about 0.0015%.

High Power Laser Science and Engineering
Sep. 02, 2022, Vol. 10 Issue 5 05000e27 (2022)
Acceleration of 60 MeV proton beams in the commissioning experiment of the SULF-10 PW laser
A. X. Li, C. Y. Qin, H. Zhang, S. Li, L. L. Fan, Q. S. Wang, T. J. Xu, N. W. Wang, L. H. Yu, Y. Xu, Y. Q. Liu, C. Wang, X. L. Wang, Z. X. Zhang, X. Y. Liu, P. L. Bai, Z. B. Gan, X. B. Zhang, X. B. Wang, C. Fan, Y. J. Sun, Y. H. Tang, B. Yao, X. Y. Liang, Y. X. Leng, B. F. Shen, L. L. Ji, R. X. Li, and Z. Z. Xu

We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.

High Power Laser Science and Engineering
On the CoverJan. 01, 1900, Vol. 10 Issue 4 04000e26 (2022)
Characterization of the plasma mirror system at the J-KAREN-P facility
Akira Kon, Mamiko Nishiuchi, Yuji Fukuda, Kotaro Kondo, Koichi Ogura, Akito Sagisaka, Yasuhiro Miyasaka, Nicholas P. Dover, Masaki Kando, Alexander S. Pirozhkov, Izuru Daito, Liu Chang, Il Woo Choi, Chang Hee Nam, Tim Ziegler, Hans-Peter Schlenvoigt, Karl Zeil, Ulrich Schramm, and Hiromitsu Kiriyama

We report on the design and characterization of the plasma mirror system installed on the J-KAREN-P laser at the Kansai Photon Science Institute, National Institutes for Quantum Science and Technology. The reflectivity of the single plasma mirror system exceeded 80%. In addition, the temporal contrast was improved by two orders of magnitude at 1 ps before the main pulse. Furthermore, the laser near-field spatial distribution after the plasma mirror was kept constant at plasma mirror fluence of less than 100 kJ/cm2. We also present the results of investigating the difference and the fluctuation in energy, pulse width and pointing stability with and without the plasma mirror system.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 4 04000e25 (2022)
Output characteristics of high-power stimulated Brillouin scattering pulse compression enhanced by thermal effects based on HT270
Hongli Wang, Seongwoo Cha, Hong Jin Kong, Yulei Wang, and Zhiwei Lv

Thermal effects are typically considered as obstacles to high-repetition-rate stimulated Brillouin scattering (SBS) pulse compression. In this paper, a novel method is proposed for improving the SBS output characteristics by exploiting thermal effects on the liquid medium. Using HT270, the SBS output parameters with the medium purification and rotating off-centered lens methods are studied at different repetition rates. The results indicate that these two methods can alleviate thermal effects and improve the energy efficiency, but the rotating method reduces the energy stability because of the aggravated optical breakdown at the kilohertz-level repetition rate. For a 35-mJ pump energy, the energy efficiency at 2 kHz without the rotating method is 30% higher than that at 100 Hz and 70% higher than that at 500 Hz. The enhancement of the SBS output characteristics by thermal effects is demonstrated theoretically and experimentally, and 2-kHz high-power SBS pulse compression is achieved with HT270.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 4 04000e24 (2022)
Parametric dependence of collisional heating of highly magnetized over-dense plasma by (far-)infrared lasers
K. Li, and W. Yu

Heating of over-dense plasma represents a long-standing quest in laser–plasma physics. When the strength of the magnetic field is above the critical value, a right-handed circularly polarized laser could propagate into and heat up the highly magnetized over-dense collisional plasma directly; the processes are dependent on the parameters of the laser, plasma and magnetic field. The parametric dependence is fully studied both qualitatively and quantitatively, resulting in scaling laws of the plasma temperature, heating depth and energy conversion efficiency. Such heating is also studied with the most powerful CO2 and strongest magnetic field in the world, where plasma with density of ${10}^{23}$ cm–3 and initial temperature of 1 keV is heated to around 10 keV within a depth of several micrometres. Several novel phenomena are also discovered and discussed, that is, local heating in the region of high density, low temperature or weak magnetic field.

High Power Laser Science and Engineering
Jun. 13, 2022, Vol. 10 Issue 4 04000e23 (2022)
Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality
Guangjian Wang, Jiaxin Song, Yisha Chen, Shuai Ren, Pengfei Ma, Wei Liu, Tianfu Yao, and Pu Zhou

In this work, an all-fiberized and narrow-linewidth fiber amplifier with record output power and near-diffraction-limited beam quality is presented. Up to 6.12 kW fiber laser with the conversion efficiency of approximately 78.8% is achieved through the fiber amplifier based on a conventional step-index active fiber. At the maximum output power, the 3 dB spectral linewidth is approximately 0.86 nm and the beam quality factor is Mx2 = 1.43, My2 = 1.36. We have also measured and compared the output properties of the fiber amplifier employing different pumping schemes. Notably, the practical power limit of the fiber amplifier could be estimated through the maximum output powers of the fiber amplifier employing unidirectional pumping schemes. Overall, this work could provide a good reference for the optimal design and potential exploration of high-power narrow-linewidth fiber laser systems.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 4 04000e22 (2022)
10 PW peak power femtosecond laser pulses at ELI-NP
Christophe Radier, Olivier Chalus, Mathilde Charbonneau, Shanjuhan Thambirajah, Guillaume Deschamps, Stephane David, Julien Barbe, Eric Etter, Guillaume Matras, Sandrine Ricaud, Vincent Leroux, Caroline Richard, François Lureau, Andrei Baleanu, Romeo Banici, Andrei Gradinariu, Constantin Caldararu, Cristian Capiteanu, Andrei Naziru, Bogdan Diaconescu, Vicentiu Iancu, Razvan Dabu, Daniel Ursescu, Ioan Dancus, Calin Alexandru Ur, Kazuo A. Tanaka, and Nicolae Victor Zamfir

We report on the generation and delivery of 10.2 PW peak power laser pulses, using the High Power Laser System at the Extreme Laser Infrastructure – Nuclear Physics facility. In this work we demonstrate for the first time, to the best of our knowledge, the compression and propagation of full energy, full aperture, laser pulses that reach a power level of more than 10 PW.

High Power Laser Science and Engineering
On the CoverJan. 01, 1900, Vol. 10 Issue 3 03000e21 (2022)
Numerical study of spatial chirp distortion in quasi-parametric chirped-pulse amplification
Yirui Wang, Jing Wang, Jingui Ma, Peng Yuan, and Liejia Qian

Optical parametric chirped-pulse amplification is inevitably subject to high-order spatial chirp, particularly under the condition of saturated amplification and a Gaussian pump; this corresponds to an irreversible spatiotemporal distortion and consequently degrades the maximum attainable focused intensity. In this paper, we reveal that such spatial chirp distortion can be significantly mitigated in quasi-parametric chirped-pulse amplification (QPCPA) with idler absorption. Simulation results show that the quality of focused intensity in saturated QPCPA is nearly ideal, with a spatiotemporal Strehl ratio higher than 0.98. As the seed bandwidth increases, the idler absorption spectrum may not be uniform, but the Strehl ratio in QPCPA can be still high enough due to stronger idler absorption.

High Power Laser Science and Engineering
May. 13, 2022, Vol. 10 Issue 3 03000e20 (2022)
A route to enhanced performance for the petawatt beamlines of the Orion laser facility
E. J. Harvey

The Orion laser facility at AWE provides multiple beams to target delivering synchronized pulses at both nanosecond and sub-picosecond duration. In the latter, the peak power approaches the petawatt level. This paper presents a conceptual design for potential development of these beamlines. This would deliver a significant enhancement of performance at the fundamental level. In addition, a new approach is described for the management of frequency conversion at high intensity, which may allow significantly enhanced performance at the second harmonic also.

High Power Laser Science and Engineering
Apr. 04, 2022, Vol. 10 Issue 3 03000e19 (2022)
Ultra-compact post-compressor on-shot wavefront measurement for beam correction at PHELIX
J. B. Ohland, U. Eisenbarth, B. Zielbauer, Y. Zobus, D. Posor, J. Hornung, D. Reemts, and V. Bagnoud

In order to reach the highest intensities, modern laser systems use adaptive optics to control their beam quality. Ideally, the focal spot is optimized after the compression stage of the system in order to avoid spatio-temporal couplings. This also requires a wavefront sensor after the compressor, which should be able to measure the wavefront on-shot. At PHELIX, we have developed an ultra-compact post-compressor beam diagnostic due to strict space constraints, measuring the wavefront over the full aperture of 28 cm. This system features all-reflective imaging beam transport and a high dynamic range in order to measure the wavefront in alignment mode as well as on shot.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 3 03000e18 (2022)
Machine-learning guided optimization of laser pulses for direct-drive implosions - CORRIGENDUM
Fuyuan Wu, Xiaohu Yang, Yanyun Ma, Qi Zhang, Zhe Zhang, Xiaohui Yuan, Hao Liu, Zhengdong Liu, Jiayong Zhong, Jian Zheng, Yutong Li, and Jie Zhang

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 2 02000e17 (2022)
Temporal-filtering dissipative soliton in an optical parametric oscillator
Hui Tong, Fuyong Wang, Zhipeng Qin, Guoqiang Xie, and Liejia Qian

Dissipative solitons have been realized in mode-locked fiber lasers in the theoretical framework of the Ginzburg–Landau equation and have significantly improved the pulse energy and peak power levels of such lasers. It is interesting to explore whether dissipative solitons exist in optical parametric oscillators in the framework of three-wave coupling equations in order to substantially increase the performance of optical parametric oscillators. Here, we demonstrate a temporal-filtering dissipative soliton in a synchronously pumped optical parametric oscillator. The temporal-gain filtering of the pump pulse combined with strong cascading nonlinearity and dispersion in the optical parametric oscillator enables the generation of a broad spectrum with a nearly linear chirp; consequently, a significantly compressed pulse and high peak power can be realized after dechirping outside the cavity. Furthermore, we realized, for the first time, dissipative solitons in an optical system with a negative nonlinear phase shift and anomalous dispersion, extending the parameter region of dissipative solitons. The findings may open a new research block for dissipative solitons and provide new opportunities for mid-infrared ultrafast science.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 2 02000e16 (2022)
Accurate electron beam phase-space theory for ionization-injection schemes driven by laser pulses
Paolo Tomassini, Francesco Massimo, Luca Labate, and Leonida A. Gizzi

After the introduction of the ionization-injection scheme in laser wake field acceleration and of related high-quality electron beam generation methods, such as two-color and resonant multi-pulse ionization injection (ReMPI), the theory of thermal emittance has been used to predict the beam normalized emittance obtainable with those schemes. We recast and extend such a theory, including both higher order terms in the polynomial laser field expansion and non-polynomial corrections due to the onset of saturation effects on a single cycle. Also, a very accurate model for predicting the cycle-averaged distribution of the extracted electrons, including saturation and multi-process events, is proposed and tested. We show that our theory is very accurate for the selected processes of ${\mathrm{Kr}}^{8^{+}\to {10}^{+}}$ and ${\mathrm{Ar}}^{8^{+}\to {10}^{+}}$ , resulting in a maximum error below 1%, even in a deep-saturation regime. The accurate prediction of the beam phase-space can be implemented, for example, in laser-envelope or hybrid particle-in-cell (PIC)/fluid codes, to correctly mimic the cycle-averaged momentum distribution without the need for resolving the intra-cycle dynamics. We introduce further spatial averaging, obtaining expressions for the whole-beam emittance fitting with simulations in a saturated regime, too. Finally, a PIC simulation for a laser wakefield acceleration injector in the ReMPI configuration is discussed.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 2 02000e15 (2022)
Monolithic edge-cladding process for the elliptical disk of N31-type Nd-doped high-power laser glass
Huiyu Chen, Min Qian, Youkuo Chen, Xin Wang, Jingping Tang, Lei Wen, Junjiang Hu, Wei Chen, Shubin Chen, and Lili Hu

This paper investigates the monolithic edge-cladding process for the elliptical disk of N31-type Nd-doped phosphate laser glass, which will be utilized under liquid cooling conditions for high-power laser systems. The thermal stress, interface bubbles and residual reflectivity, which are due to high-temperature casting and bonding during the monolithic edge-cladding process, are simulated and determined. The applied mould is optimized to a rectangular cavity mould, and the casting temperature is optimized to 1000°C. The resulting lower bubble density makes the mean residual reflectivity as low as 6.75 × 10-5, which is enough to suppress the amplified spontaneous emission generated in the Nd-glass disk, and the resulting maximum optical retardation is converged to 10.2–13.3 nm/cm, which is a favourable base for fine annealing to achieve the stress specification of less than or equal to 5 nm/cm. After fine annealing at the optimized 520°C, the maximum optical retardation is as low as 4.8 nm/cm, and the minimum transmitted wavefront peak-to-valley value is 0.222 wavelength (632.8 nm). An N31 elliptical disk with the size of 194 mm × 102 mm × 40 mm can be successfully cladded by the optimized monolithic edge-cladding process, whose edge-cladded disk with the size of 200 mm × 108 mm × 40 mm can achieve laser gain one-third higher than that of an N21-type disk of the same size.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 2 02000e14 (2022)
High repetition rate exploration of the Biermann battery effect in laser produced plasmas over large spatial regions
J. J. Pilgram, M. B. P. Adams, C. G. Constantin, P. V. Heuer, S. Ghazaryan, M. Kaloyan, R. S. Dorst, D. B. Schaeffer, P. Tzeferacos, and C. Niemann

In this paper we present a high repetition rate experimental platform for examining the spatial structure and evolution of Biermann-generated magnetic fields in laser-produced plasmas. We have extended the work of prior experiments, which spanned over millimeter scales, by spatially measuring magnetic fields in multiple planes on centimeter scales over thousands of laser shots. Measurements with magnetic flux probes show azimuthally symmetric magnetic fields that range from 60 G at 0.7 cm from the target to 7 G at 4.2 cm from the target. The expansion rate of the magnetic fields and evolution of current density structures are also mapped and examined. Electron temperature and density of the laser-produced plasma are measured with optical Thomson scattering and used to directly calculate a magnetic Reynolds number of $1.4\times {10}^4$ , confirming that magnetic advection is dominant at $\ge 1.5$ cm from the target surface. The results are compared to FLASH simulations, which show qualitative agreement with the data.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 2 02000e13 (2022)
Machine-learning guided optimization of laser pulses for direct-drive implosions
Fuyuan Wu, Xiaohu Yang, Yanyun Ma, Qi Zhang, Zhe Zhang, Xiaohui Yuan, Hao Liu, Zhengdong Liu, Jiayong Zhong, Jian Zheng, Yutong Li, and Jie Zhang

The optimization of laser pulse shapes is of great importance and a major challenge for laser direct-drive implosions. In this paper, we propose an efficient intelligent method to perform laser pulse optimization via hydrodynamic simulations guided by the genetic algorithm and random forest algorithm. Compared to manual optimizations, the machine-learning guided method is able to efficiently improve the areal density by a factor of 63% and reduce the in-flight-aspect ratio by a factor of 30% at the same time. A relationship between the maximum areal density and ion temperature is also achieved by the analysis of the big simulation dataset. This design method has been successfully demonstrated by the 2021 summer double-cone ignition experiments conducted at the SG-II upgrade laser facility and has great prospects for the design of other inertial fusion experiments.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 2 02000e12 (2022)
A high-pinning-Type-II superconducting maglev for ICF target delivery: main principles, material options and demonstration models
I. V. Aleksandrova, E. R. Koresheva, and E. L. Koshelev

Nowadays, inertial confinement fusion (ICF) research related to noncontact positioning and transport of free-standing cryogenic targets is playing an increasingly important role in this field. The operational principle behind these technologies is the magnetic acceleration of the levitating target carrier (or sabot) made from Type-II, high-temperature superconductors (HTSCs). The physics of interaction among levitation, guidance and propulsion systems is based on a quantum levitation of high-pinning HTSCs in the mutually normal magnetic fields. This paper discusses current target delivery strategies and future perspectives to create different permanent magnet guideway (PMG) systems for ICF target transport with levitation. In particular, several PMG building options for optimizing both suspension and levitation of ICF targets using an HTSC-sabot will be analyzed. Credible solutions have been demonstrated for both linear and round PMGs, including the ones with a cyclotron acceleration process to realize high-running velocities of the HTSC-sabot for a limited magnetic track. Focusing on physics, we describe in detail the main aspects of the PMG building and the results obtained from computations and proof of principle experiments. High-pinning HTSC magnetic levitation promises a stable and self-controlled levitation to accelerate the ICF targets placed in the HTSC-sabots up to the required injection velocities of 200 m/s and beyond.

High Power Laser Science and Engineering
On the CoverJan. 01, 1900, Vol. 10 Issue 2 02000e11 (2022)
An efficient high-power femtosecond laser based on periodic-layered-Kerr media nonlinear compression and a Yb:YAG regenerative amplifier
Jie Guo, Zichen Gao, Di Sun, Xiao Du, Yongxi Gao, and Xiaoyan Liang

We demonstrate an efficient ultrafast source with 195 fs pulse duration, 54 W average power at 200 kHz repetition rate and near diffraction-limited beam quality. The compact setup incorporates a thin-disk Yb:YAG regenerative amplifier (RA) and a subsequent nonlinear pulse compression stage with periodic-layered Kerr media (PLKM), which is one of the multiple-thin-solid-plate schemes based on nonlinear resonator theory. In virtue of the formation of quasi-stationary spatial soliton in PLKM, the near diffraction-limited beam quality of the RA remained almost undisturbed after post-compression. The nonlinear pulse compression module is simple and efficient with a transmission of 96%. To the best our knowledge, for pulse energy over 200 μJ, this is the highest output power reported for the multiple-thin-solid-plate scheme. This source manifests an economical combination to mitigate the bandwidth limitations of Yb-based high-power chirped pulse amplifiers.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 2 02000e10 (2022)
Spectral broadening for multi-Joule pulse compression in the APOLLON Long Focal Area facility
P.-G. Bleotu, J. Wheeler, D. Papadopoulos, M. Chabanis, J. Prudent, M. Frotin, L. Martin, N. Lebas, A. Freneaux, A. Beluze, F. Mathieu, P. Audebert, D. Ursescu, J. Fuchs, and G. Mourou

Spectral-broadening of the APOLLON PW-class laser pulses using a thin-film compression technique within the long-focal-area interaction chamber of the APOLLON laser facility is reported, demonstrating the delivery of the full energy pulse to the target interaction area. The laser pulse at 7 J passing through large aperture, thin glass wafers is spectrally broadened to a bandwidth that is compatible with a 15-fs pulse, indicating also the possibility to achieve sub-10-fs pulses using 14 J. Placing the post-compressor near the interaction makes for an economical method to produce the shortest pulses by limiting the need for high damage, broadband optics close to the final target rather than throughout the entire laser transport system.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 2 020000e9 (2022)
Cladding-pumped Raman fiber laser with 0.78% quantum defect enabled by phosphorus-doped fiber
Xiaoya Ma, Jiangming Xu, Jun Ye, Yang Zhang, Liangjin Huang, Tianfu Yao, Jinyong Leng, Zhiyong Pan, and Pu Zhou

The quantum defect (QD) is an important issue that demands prompt attention in high-power fiber lasers. A large QD may aggravate the thermal load in the laser, which would impact the frequency, amplitude noise and mode stability, and threaten the security of the high-power laser system. Here, we propose and demonstrate a cladding-pumped Raman fiber laser (RFL) with QD of less than 1%. Using the Raman gain of the boson peak in a phosphorus-doped fiber to enable the cladding pump, the QD is reduced to as low as 0.78% with a 23.7 W output power. To our knowledge, this is the lowest QD ever reported in a cladding-pumped RFL. Furthermore, the output power can be scaled to 47.7 W with a QD of 1.29%. This work not only offers a preliminary platform for the realization of high-power low-QD fiber lasers, but also proves the great potential of low-QD fiber lasers in power scaling.

High Power Laser Science and Engineering
Editors' PickJan. 01, 1900, Vol. 10 Issue 2 020000e8 (2022)
Compensation method for performance degradation of optically addressed spatial light modulator induced by CW laser
Tongyao Du, Dajie Huang, He Cheng, Wei Fan, Zhibo Xing, Xuechun Li, and Jianqiang Zhu

In this paper, we propose an effective method to compensate for the performance degradation of optically addressed spatial light modulators (OASLMs). The thermal deposition problem usually leads to the on-off ratio reduction of amplitude OASLM, so it is difficult to achieve better results in high-power laser systems. Through the analysis of the laser-induced temperature rise model and the liquid crystal layer voltage model, it is found that reducing the driving voltage of the liquid crystal light valve and increasing the driving current of the optical writing module can compensate for the decrease of on–off ratio caused by temperature rise. This is the result of effectively utilizing the photoconductive effect of Bi12SiO20 (BSO) crystal. The experimental results verify the feasibility of the proposed method and increase the laser withstand power of amplitude-only OASLM by about a factor of 2.5.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 1 010000e7 (2022)
Spatiotemporal coupling investigations for Ti:sapphire-based multi-PW lasers
Ji Ping Zou, Hervé Coïc, and Dimitris Papadopoulos

Emerging multi-PW-class lasers and their envisioned laser–plasma interaction applications in unprecedented intensity regimes set a very demanding frame for the precise understanding of the finest properties of these systems. In this work we present a synthesis of simulation studies on a series of less known or even completely disregarded spatiotemporal effects that could potentially impact greatly the performances of high-intensity lasers.

High Power Laser Science and Engineering
Editors' PickJan. 01, 1900, Vol. 10 Issue 1 010000e5 (2022)
Fabrication of micrometre-sized periodic gratings in free-standing metallic foils for laser–plasma experiments
C. C. Gheorghiu, M. Cerchez, E. Aktan, R. Prasad, F. Yilmaz, N. Yilmaz, D. Popa, O. Willi, and V. Leca

Engineered targets are expected to play a key role in future high-power laser experiments calling for joined, extensive knowledge in materials properties, engineering techniques and plasma physics. In this work, we propose a novel patterning procedure of self-supported 10 μm thick Au and Cu foils for obtaining micrometre-sized periodic gratings as targets for high-power laser applications. Accessible techniques were considered, by using cold rolling, electron-beam lithography and the Ar-ion milling process. The developed patterning procedure allows efficient control of the grating and foil surface on large area. Targets consisting of patterned regions of 450 μm × 450 μm, with 2 μm periodic gratings, were prepared on 25 mm × 25 mm Au and Cu free-standing foils, and preliminary investigations of the micro-targets interacting with an ultrashort, relativistic laser pulse were performed. These test experiments demonstrated that, in certain conditions, the micro-gratings show enhanced laser energy absorption and higher efficiency in accelerating charge particle beams compared with planar thin foils of similar thickness.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 1 010000e3 (2022)
Mapping non-laminar proton acceleration in laser-driven target normal sheath field
C. Y. Qin, H. Zhang, S. Li, S. H. Zhai, A. X. Li, J. Y. Qian, J. Y. Gui, F. X. Wu, Z. X. Zhang, Y. Xu, X. Y. Liang, Y. X. Leng, B. F. Shen, L. L. Ji, and R. X. Li

We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 10 Issue 1 010000e2 (2022)
Observation and modelling of stimulated Raman scattering driven by an optically smoothed laser beam in experimental conditions relevant for shock ignition
G. Cristoforetti, S. Hüller, P. Koester, L. Antonelli, S. Atzeni, F. Baffigi, D. Batani, C. Baird, N. Booth, M. Galimberti, K. Glize, A. Héron, M. Khan, P. Loiseau, D. Mancelli, M. Notley, P. Oliveira, O. Renner, M. Smid, A. Schiavi, G. Tran, N. C. Woolsey, and L. A. Gizzi

We report results and modelling of an experiment performed at the Target Area West Vulcan laser facility, aimed at investigating laser–plasma interaction in conditions that are of interest for the shock ignition scheme in inertial confinement fusion (ICF), that is, laser intensity higher than ${10}^{16}$ $\mathrm{W}/{\mathrm{cm}}^2$ impinging on a hot ($T>1$ keV), inhomogeneous and long scalelength pre-formed plasma. Measurements show a significant stimulated Raman scattering (SRS) backscattering ($\sim 4\%{-}20\%$ of laser energy) driven at low plasma densities and no signatures of two-plasmon decay (TPD)/SRS driven at the quarter critical density region. Results are satisfactorily reproduced by an analytical model accounting for the convective SRS growth in independent laser speckles, in conditions where the reflectivity is dominated by the contribution from the most intense speckles, where SRS becomes saturated. Analytical and kinetic simulations well reproduce the onset of SRS at low plasma densities in a regime strongly affected by non-linear Landau damping and by filamentation of the most intense laser speckles. The absence of TPD/SRS at higher densities is explained by pump depletion and plasma smoothing driven by filamentation. The prevalence of laser coupling in the low-density profile justifies the low temperature measured for hot electrons ($7\!{-}\!12$ keV), which is well reproduced by numerical simulations.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 4 04000e60 (2021)
Laser scaling for generation of megatesla magnetic fields by microtube implosions
D. Shokov, M. Murakami, and J. J. Honrubia

Microtube implosions are a novel scheme to generate ultrahigh magnetic fields of the megatesla order. These implosions are driven by ultraintense and ultrashort laser pulses. Using two- and three-dimensional particle simulations where megatesla-order magnetic fields can be achieved, we demonstrate scaling and criteria in terms of laser parameters, such as laser intensity and laser energy, to facilitate practical experiments toward the realization of extreme physical conditions, which have yet to be realized in laboratories. Microtube implosions should provide a new platform for studies in fundamental and applied physics relevant to ultrahigh magnetic fields.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 4 04000e56 (2021)
Use of KDP crystal as a Kerr nonlinear medium for compressing PW laser pulses down to 10 fs
Andrey Shaykin, Vladislav Ginzburg, Ivan Yakovlev, Anton Kochetkov, Alexey Kuzmin, Sergey Mironov, Ilya Shaikin, Sergey Stukachev, Vladimir Lozhkarev, Artem Prokhorov, and Efim Khazanov

The input pulse of the laser PEARL with energy of 18 J and pulse duration of about 60 fs was compressed to 10 fs after passage through a 4-mm-thick KDP crystal and reflection at two chirped mirrors with sum dispersion of -200 fs2. The experiments were performed for the В-integral values from 5 to 19 without visible damage to the optical elements, which indicates that small-scale self-focusing is not a significant issue. It was shown that, by virtue of the low dispersion of the group velocity, the KDP crystal has some advantages over silica: a larger pulse compression coefficient, especially at a small value of the В-integral (B = 5, …, 9), lower absolute values of chirped mirror dispersion, and also a possibility to control the magnitude of nonlinearity and dispersion by changing crystal orientation.

High Power Laser Science and Engineering
Editors' PickJan. 01, 1900, Vol. 9 Issue 4 04000e54 (2021)
An evaluation of sustainability and societal impact of high-power laser and fusion technologies: a case for a new European research infrastructure
S. Atzeni, D. Batani, C. N. Danson, L. A. Gizzi, M. Perlado, M. Tatarakis, V. Tikhonchuk, and L. Volpe

Fusion energy research is delivering impressive new results emerging from different infrastructures and industrial devices evolving rapidly from ideas to proof-of-principle demonstration and aiming at the conceptual design of reactors for the production of electricity. A major milestone has recently been announced in laser fusion by the Lawrence Livermore National Laboratory and is giving new thrust to laser-fusion energy research worldwide. Here we discuss how these circumstances strongly suggest the need for a European intermediate-energy facility dedicated to the physics and technology of laser-fusion ignition, the physics of fusion materials and advanced technologies for high-repetition-rate, high-average-power broadband lasers. We believe that the participation of the broader scientific community and the increased engagement of industry, in partnership with research and academic institutions, make most timely the construction of this infrastructure of extreme scientific attractiveness.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 4 04000e52 (2021)
Power-scalable sub-100-fs Tm laser at 2.08 μm
Li Wang, Weidong Chen, Yongguang Zhao, Hanlin Yang, Wei Jing, Zhongben Pan, Hui Huang, Jiachen Liu, Ji Eun Bae, Fabian Rotermund, Pavel Loiko, Xavier Mateos, Zhengping Wang, Xinguang Xu, Uwe Griebner, and Valentin Petrov

We report on a power-scalable sub-100-fs laser in the 2-μm spectral range using a Tm3+-doped ‘mixed’ (Lu,Sc)2O3 sesquioxide ceramic as an active medium. Pulses as short as 58 fs at 2076 nm with an average output power of 114 mW at a pulse repetition rate of approximately 82.9 MHz are generated by employing single-walled carbon nanotubes as a saturable absorber. A higher average power of 350 mW at 2075 nm is obtained at the expense of the pulse duration (65 fs). A maximum average power of 486 mW is achieved for a pulse duration of 98 fs and an optical conversion efficiency of 22.3%, representing the highest value ever reported from sub-100-fs mode-locked Tm lasers.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 4 04000e50 (2021)
Recent progress of laboratory astrophysics with intense lasers
Hideaki Takabe, and Yasuhiro Kuramitsu

Thanks to a rapid progress of high-power lasers since the birth of laser by T. H. Maiman in 1960, intense lasers have been developed mainly for studying the scientific feasibility of laser fusion. Inertial confinement fusion with an intense laser has attracted attention as a new future energy source after two oil crises in the 1970s and 1980s. From the beginning, the most challenging physics is known to be the hydrodynamic instability to realize the spherical implosion to achieve more than 1000 times the solid density. Many studies have been performed theoretically and experimentally on the hydrodynamic instability and resultant turbulent mixing of compressible fluids. During such activities in the laboratory, the explosion of supernova SN1987A was observed in the sky on 23 February 1987. The X-ray satellites have revealed that the hydrodynamic instability is a key issue to understand the physics of supernova explosion. After collaboration between laser plasma researchers and astrophysicists, the laboratory astrophysics with intense lasers was proposed and promoted around the end of the 1990s. The original subject was mainly related to hydrodynamic instabilities. However, after two decades of laboratory astrophysics research, we can now find a diversity of research topics. It has been demonstrated theoretically and experimentally that a variety of nonlinear physics of collisionless plasmas can be studied in laser ablation plasmas in the last decade. In the present paper, we shed light on the recent 10 topics studied intensively in laboratory experiments. A brief review is given by citing recent papers. Then, modeling cosmic-ray acceleration with lasers is reviewed in a following session as a special topic to be the future main topic in laboratory astrophysics research.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 4 04000e49 (2021)
202 W dual-end-pumped Tm:YLF laser with a VBG as an output coupler
Disheng Wei, Shuyi Mi, Ke Yang, Junhui Li, Jinwen Tang, Baoquan Yao, Tongyu Dai, and Xiaoming Duan

We demonstrated a 202 W Tm:YLF slab laser using a reflecting volume Bragg grating (VBG) as an output coupler at room temperature. Two kinds of active heat dissipation methods were used for the VBG to suppress the shift of wavelength caused by its increasing temperature. The maximum continuous wave (CW) output power of 202 W using the microchannel cooling was obtained under the total incident pump power of 553 W, the corresponding slope efficiency and optical-to-optical conversion efficiency were 39.7% and 36.5%, respectively. The central wavelength was 1908.5 nm with the linewidth (full width at half maximum) of 0.57 nm. Meanwhile, with the laser output increasing from 30 to 202 W, the total shift was about 1.0 nm, and the wavelength was limited to two water absorption lines near 1908 nm. The beam quality factors M2 were measured to be 2.3 and 4.0 in x and y directions at 202 W.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 4 04000e48 (2021)
Shock dynamics and shock collision in foam layered targets
K. Batani, A. Aliverdiev, R. Benocci, R. Dezulian, A. Amirova, E. Krousky, M. Pfeifer, J. Skala, R. Dudzak, W. Nazarov, and D. Batani

We present an experimental study of the dynamics of shocks generated by the interaction of a double-spot laser in different kinds of targets: simple aluminum foils and foam–aluminum layered targets. The experiment was performed using the Prague PALS iodine laser working at 0.44 μm wavelength and irradiance of a few 1015 W/cm2. Shock breakouts for pure Al and for foam-Al targets have been recorded using time-resolved self-emission diagnostics. Experimental results have been compared with numerical simulations. The shocks originating from two spots move forward and expand radially in the targets, finally colliding in the intermediate region and producing a very strong increase in pressure. This is particularly clear for the case of foam layered targets, where we also observed a delay of shock breakout and a spatial redistribution of the pressure. The influence of the foam layer doped with high-Z (Au) nanoparticles on the shock dynamics was also studied.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 3 03000e47 (2021)
Spectral filtering effect on multi-pulsing induced by chirped fiber Bragg grating in dispersion-managed mode-locked Yb-doped fiber lasers
Dongyu Yan, Bowen Liu, Defeng Zou, Jie Guo, Yuxi Chu, Youjian Song, and Minglie Hu

We numerically and experimentally investigate the multi-pulsing mechanism in a dispersion-managed mode-locked Yb-doped fiber laser. Multi-pulsing occurs primarily owing to the inherent filtering effect of the chirped fiber Bragg grating. The spectral filtering effect restricts the spectral broadening induced by self-phase modulation and causes extra loss, leading to a decreased pump power threshold for the multi-pulsing state. Numerical simulations show that multi-pulsing emerges at a lower pump power when the spectral filter bandwidth becomes narrower. In the experiment, the spectral width increases as the net cavity dispersion approaches zero. Pulses with wider spectral widths experience more loss from the spectral filtering effect, leading to a decreased pump power threshold for multi-pulsing. Therefore, the net cavity dispersion also has an impact on the multi-pulsing threshold. Based on this conclusion, we devise a strategy to obtain single-pulsing operation with the shortest pulse width and the highest pulse energy.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 3 03000e46 (2021)
All-fiberized and narrow-linewidth 5 kW power-level fiber amplifier based on a bidirectional pumping configuration
Pengfei Ma, Hu Xiao, Wei Liu, Hanwei Zhang, Xiaolin Wang, Jinyong Leng, and Pu Zhou

In this paper, an all-fiberized and narrow-linewidth 5 kW power-level fiber amplifier is presented. The laser is achieved based on the master oscillator power amplification configuration, in which the phase-modulated single-frequency laser is applied as the seed laser and a bidirectional pumping configuration is applied in the power amplifier. The stimulated Brillouin scattering, stimulated Raman scattering, and transverse mode instability effects are all effectively suppressed in the experiment. Consequently, the output power is scaled up to 4.92 kW with a slope efficiency of as high as approximately 80%. The 3-dB spectral width is about 0.59 nm, and the beam quality is measured to be M2∼1.22 at maximum output power. Furthermore, we have also conducted a detailed spectral analysis on the spectral width of the signal laser, which reveals that the spectral wing broadening phenomenon could lead to the obvious decrease of the spectral purity at certain output power. Overall, this work could provide a reference for obtaining and optimizing high-power narrow-linewidth fiber lasers.

High Power Laser Science and Engineering
Editors' PickJan. 01, 1900, Vol. 9 Issue 3 03000e45 (2021)
Direct acceleration of an annular attosecond electron slice driven by near-infrared Laguerre–Gaussian laser
C. Jiang, W. P. Wang, S. Weber, H. Dong, Y. X. Leng, R. X. Li, and Z. Z. Xu

A new near-infrared direct acceleration mechanism driven by Laguerre–Gaussian laser is proposed to stably accelerate and concentrate electron slice both in longitudinal and transversal directions in vacuum. Three-dimensional simulations show that a 2-μm circularly polarized ${\mathrm{LG}}_p^l$ (p = 0, l = 1, σz = -1) laser can directly manipulate attosecond electron slices in additional dimensions (angular directions) and give them annular structures and angular momentums. These annular vortex attosecond electron slices are expected to have some novel applications such as in the collimation of antiprotons in conventional linear accelerators, edge-enhancement electron imaging, structured X-ray generation, and analysis and manipulation of nanomaterials.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 3 03000e44 (2021)
Efficient bright γ-ray vortex emission from a laser-illuminated light-fan-in-channel target
Hao Zhang, Jie Zhao, Yanting Hu, Qianni Li, Yu Lu, Yue Cao, Debin Zou, Zhengming Sheng, Francesco Pegoraro, Paul McKenna, Fuqiu Shao, and Tongpu Yu

X/γ-rays have many potential applications in laboratory astrophysics and particle physics. Although several methods have been proposed for generating electron, positron, and X/γ-photon beams with angular momentum (AM), the generation of ultra-intense brilliant γ-rays is still challenging. Here, we present an all-optical scheme to generate a high-energy γ-photon beam with large beam angular momentum (BAM), small divergence, and high brilliance. In the first stage, a circularly polarized laser pulse with intensity of 1022 W/cm2 irradiates a micro-channel target, drags out electrons from the channel wall, and accelerates them to high energies via the longitudinal electric fields. During the process, the laser transfers its spin angular momentum (SAM) to the electrons’ orbital angular momentum (OAM). In the second stage, the drive pulse is reflected by the attached fan-foil and a vortex laser pulse is thus formed. In the third stage, the energetic electrons collide head-on with the reflected vortex pulse and transfer their AM to the γ-photons via nonlinear Compton scattering. Three-dimensional particle-in-cell simulations show that the peak brilliance of the γ-ray beam is $\sim 1{0}^{22}$ photons·s–1·mm–2·mrad–2 per 0.1% bandwidth at 1 MeV with a peak instantaneous power of 25 TW and averaged BAM of $1{0}^6\hslash$/photon. The AM conversion efficiency from laser to the γ-photons is unprecedentedly 0.67%.

High Power Laser Science and Engineering
On the CoverJan. 01, 1900, Vol. 9 Issue 3 03000e43 (2021)
High-resolution X-ray flash radiography of Ti characteristic lines with multilayer Kirkpatrick–Baez microscope at the Shenguang-II Update laser facility
Shengzhen Yi, Feng Zhang, Qiushi Huang, Lai Wei, Yuqiu Gu, and Zhanshan Wang

High-resolution X-ray flash radiography of Ti characteristic lines with a multilayer Kirkpatrick–Baez microscope was developed on the Shenguang-II (SG-II) Update laser facility. The microscope uses an optimized multilayer design of Co/C and W/C stacks to obtain a high reflection efficiency of the Ti characteristic lines while meeting the precise alignment requirement at the Cu Kα line. The alignment method based on dual simulated balls was proposed herein, which simultaneously realizes an accurate indication of the center field of view and the backlighter position. The optical design, multilayer coatings, and alignment method of the microscope and the experimental result of Ti flash radiography of the Au-coned CH shell target on the SG-II Update are described.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 3 03000e42 (2021)
A 3.5-kW near-single-mode oscillating–amplifying integrated fiber laser
Lingfa Zeng, Xiaolin Wang, Baolai Yang, Hanwei Zhang, and Xiaojun Xu

The fiber laser based on an oscillating-amplifying integrated structure has the potential to benefit from the advantages of a fiber laser oscillator and amplifier with the characteristics of strong anti-back-reflected light ability and high efficiency. Here, we achieved a 3.5-kW near-single-mode (M2 ∼ 1.24) oscillating–amplifying integrated fiber laser with an active fiber length of 8 m in the oscillating section and 17.6 m in the amplifying section. While operating at the maximum power, the optical-to-optical conversion efficiency is 87.0%, and the intensity of stimulated Raman scattering is about 23.61 dB lower than that of the signal light. To the best of the authors’ knowledge, this is the highest output power of an oscillating–amplifying integrated fiber laser, accompanied with the best beam quality and the highest efficiency.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 3 03000e41 (2021)
Time-dependent measurement of high-power laser light reflection by low-Z foam plasma
M. Cipriani, S. Yu. Gus’kov, F. Consoli, R. De Angelis, A. A. Rupasov, P. Andreoli, G. Cristofari, G. Di Giorgio, and M. Salvadori

Porous materials have many applications for laser–matter interaction experiments related to inertial confinement fusion. Obtaining new knowledge about the properties of the laser-produced plasma of porous media is a challenging task. In this work, we report, for the first time to the best of our knowledge, the time-dependent measurement of the reflected light of a terawatt laser pulse from the laser-produced plasma of low-Z foam material of overcritical density. The experiments have been performed with the ABC laser, with targets constituted by foam of overcritical density and by solid media of the same chemical composition. We implemented in the MULTI-FM code a model for the light reflection to reproduce and interpret the experimental results. Using the simulations together with the experimental results, we indicate a criterion for estimating the homogenization time of the laser-produced plasma, whose measurement is challenging with direct diagnostic techniques and still not achieved.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 3 03000e40 (2021)
Utilizing phase-shifted long-period fiber grating to suppress spectral broadening of a high-power fiber MOPA laser system
Yinxu Bian, Kerong Jiao, Xuecheng Wu, Hua Shen, Feiyan Yang, and Rihong Zhu

Suppressing nonlinear effects in high-power fiber lasers based on fiber gratings has become a hotspot. At present, research is mainly focused on suppressing stimulated Raman scattering in a high-power fiber laser. However, the suppression of spectral broadening, caused by self-phase modulation or four-wave mixing, is still a challenging attribute to the close distance between the broadened laser and signal laser. If using a traditional fiber grating with only one stopband to suppress the spectral broadening, the signal power will be stripped simultaneously. Confronting this challenge, we propose a novel method based on phase-shifted long-period fiber grating (PS-LPFG) to suppress spectral broadening in a high-power fiber master oscillator power amplifier (MOPA) laser system in this paper. A PS-LPFG is designed and fabricated on 10/130 passive fiber utilizing a point-by-point scanning technique. The resonant wavelength of the fabricated PS-LPFG is 1080 nm, the full width at half maximum of the passband is 5.48 nm, and stopband extinction exceeds 90%. To evaluate the performance of the PS-LPFG, the grating is inserted into the seed of a kilowatt-level continuous-wave MOPA system. Experiment results show that the 30 dB linewidth of the output spectrum is narrowed by approximately 37.97%, providing an effective and flexible way for optimizing the output linewidth of high-power fiber MOPA laser systems.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 3 03000e39 (2021)
High-energy, high-repetition-rate ultraviolet pulses from an efficiency-enhanced, frequency-tripled laser
Xinlin Lü, Yujie Peng, Wenyu Wang, Yuanan Zhao, Xiangyu Zhu, and Yuxin Leng

In this study, a high-energy, temporally shaped picosecond ultraviolet (UV) laser running at 100 Hz is demonstrated, with its pulses boosted to 120 mJ by cascaded regenerative and double-pass amplifiers, resulting in a gain of more than 108. With precise manipulation and optimization, the amplified laser pulses were flat-top in the temporal and spatial domains to maintain high filling factors, which significantly improved the conversion efficiency of the subsequent third harmonic generation (THG). Finally, 91 mJ, 470 ps pulses were obtained at 355 nm, corresponding to a conversion efficiency as high as 76%, which, as far as we are aware of, is the highest THG efficiency for a high-repetition-rate picosecond laser. In addition, the energy stability of the UV laser is better than 1.07% (root mean square), which makes this laser an attractive source for a variety of fields including laser conditioning and micro-fabrication.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 3 03000e38 (2021)
Optimizing noise characteristics of mode-locked Yb-doped fiber laser using gain-induced RIN-transfer dynamics
Jiangshuoxue Han, Yang Liu, Zejiang Deng, Gehui Xie, Daping Luo, Chenglin Gu, Lian Zhou, and Wenxue Li

Gain-parameter-dependent transfer functions and phase-noise performances in a mode-locked Yb-doped fiber laser are measured in this study. It is discovered that the corner frequency in the amplitude and phase domains is determined by the absorption coefficient of the gain fiber, when the total absorption and other cavity parameters are fixed. This shows that an oscillator using gain fiber with higher dopant concentration accumulates more phase noise. Furthermore, we present net cavity dispersion-dependent transfer functions to verify the effect of dispersion management on the frequency response. We derive a guideline for optimizing mode-locked fiber laser design to achieve low phase noise and timing jitter.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 3 03000e36 (2021)
Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser
Yulan Li, Jie Ding, Zhenxu Bai, Xuezong Yang, Yuqi Li, Jingling Tang, Yu Zhang, Yaoyao Qi, Yulei Wang, and Zhiwei Lu

Stimulated Raman-scattering-based lasers provide an effective way to achieve wavelength conversion. However, thermally induced beam degradation is a notorious obstacle to power scaling and it also limits the applicable range where high output beam quality is needed. Considerable research efforts have been devoted to developing Raman materials, with diamond being a promising candidate to acquire wavelength-versatile, high-power, and high-quality output beam owing to its excellent thermal properties, high Raman gain coefficient, and wide transmission range. The diamond Raman resonator is usually designed as an external-cavity pumped structure, which can easily eliminate the negative thermal effects of intracavity laser crystals. Diamond Raman converters also provide an approach to improve the beam quality owing to the Raman cleanup effect. This review outlines the research status of diamond Raman lasers, including beam quality optimization, Raman conversion, thermal effects, and prospects for future development directions.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 3 03000e35 (2021)
Diode-pumped 10 W femtosecond Yb:CALGO laser with high beam quality
Jinfang Yang, Zhaohua Wang, Jiajun Song, Renchong Lv, Xianzhi Wang, Jiangfeng Zhu, and Zhiyi Wei

We demonstrate a diode-pumped femtosecond Yb:CaGdAlO4 (Yb:CALGO) laser with a semiconductor saturable absorber mirror (SESAM) for stable mode-locking operation. A perfect beam profile is measured under 10 W output power with $M_{x}^{2}$ = 1.017 and $M_{y}^{2}$ = 1.016 in the horizontal and vertical directions, respectively. At the repetition rate of 71.66 MHz, the optical pulse duration is 247 fs and the pulse energy is 140 nJ at the central wavelength of 1041 nm, corresponding to a peak power of 0.56 MW. In addition, we also generate continuous wave (CW) power of more than 15 W with TEM00 mode, corresponding to an optical-to-optical efficiency of 44.1%.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e33 (2021)
Amplification characteristics in active tapered segmented cladding fiber with large mode area
Caijian Xie, Tigang Ning, Jingjing Zheng, Li Pei, Jianshuai Wang, Jing Li, Haidong You, Chuangye Wang, and Xuekai Gao

A kind of tapered segmented cladding fiber (T-SCF) with large mode area (LMA) is proposed, and the mode and amplification characteristics of T-SCFs with concave, linear, and convex tapered structures are investigated based on finite-element method (FEM) and few-mode steady-state rate equation. Simulation results indicate that the concave tapered structure can introduce high loss for high-order modes (HOMs) that is advantageous to achieve single-mode operation, whereas the convex tapered structure provides large effective mode area that can help to mitigate nonlinear effects. Meanwhile, the small-to-large amplification scheme shows further advantages on stripping off HOMs, and the large-to-small amplification scheme decreases the heat load density induced by the high-power pump. Moreover, single-mode propagation performance, effective mode area, and heat load density of the T-SCF are superior to those of tapered step index fiber (T-SIF). These theoretical model and numerical results can provide instructive suggestions for designing high-power fiber lasers and amplifiers.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e32 (2021)
Design, installation and commissioning of the ELI-Beamlines high-power, high-repetition rate HAPLS laser beam transport system to P3
S. Borneis, T. Laštovička, M. Sokol, T.-M. Jeong, F. Condamine, O. Renner, V. Tikhonchuk, H. Bohlin, A. Fajstavr, J.-C. Hernandez, N. Jourdain, D. Kumar, D. Modřanský, A. Pokorný, A. Wolf, S. Zhai, G. Korn, and S. Weber

The design and the early commissioning of the ELI-Beamlines laser facility’s 30 J, 30 fs, 10 Hz HAPLS (High-repetition-rate Advanced Petawatt Laser System) beam transport (BT) system to the P3 target chamber are described in detail. It is the world’s first and with 54 m length, the longest distance high average power petawatt (PW) BT system ever built. It connects the HAPLS pulse compressor via the injector periscope with the 4.5 m diameter P3 target chamber of the plasma physics group in hall E3. It is the largest target chamber of the facility and was connected first to the BT system. The major engineering challenges are the required high vibration stability mirror support structures, the high pointing stability optomechanics as well as the required levels for chemical and particle cleanliness of the vacuum vessels to preserve the high laser damage threshold of the dielectrically coated high-power mirrors. A first commissioning experiment at low pulse energy shows the full functionality of the BT system to P3 and the novel experimental infrastructure.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e30 (2021)
New phase-matching selection rule to generate angularly isolated harmonics
Xiaomei Zhang, Baifei Shen, Lingang Zhang, and Yin Shi

High harmonic generation (HHG) is an ideal probing source. In general, all harmonics are coupled with the corresponding input laser when generated, and for applications, they are separated using additional spectrometers. Herein, we report the angular isolation of relativistic harmonics at a predicted emission angle upon generation and, most importantly, a new phase-matching chain selection rule is derived to generate harmonics. Based on the laser plasma mechanism involving two non-collinear relativistic driving lasers, the nth harmonic carrying the information of both input lasers originates from its adjacent (n – 1)th harmonic coupled with one of the input lasers. Meanwhile, the intensity and emission angle of the generated isolated harmonic are both greatly increased compared with those in the gas scheme. These results are satisfactorily verified by theoretical analysis and three-dimensional particle-in-cell simulations, which have physical significance and are essential for practical applications.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e28 (2021)
First radiative shock experiments on the SG-II laser
Francisco Suzuki-Vidal, Thomas Clayson, Chantal Stehlé, Uddhab Chaulagain, Jack W. D. Halliday, Mingying Sun, Lei Ren, Ning Kang, Huiya Liu, Baoqiang Zhu, Jianqiang Zhu, Carolina De Almeida Rossi, Teodora Mihailescu, Pedro Velarde, Manuel Cotelo, John M. Foster, Colin N. Danson, Christopher Spindloe, Jeremy P. Chittenden, and Carolyn Kuranz

We report on the design and first results from experiments looking at the formation of radiative shocks on the Shenguang-II (SG-II) laser at the Shanghai Institute of Optics and Fine Mechanics in China. Laser-heating of a two-layer CH/CH–Br foil drives a $\sim 40$ km/s shock inside a gas cell filled with argon at an initial pressure of 1 bar. The use of gas-cell targets with large (several millimetres) lateral and axial extent allows the shock to propagate freely without any wall interactions, and permits a large field of view to image single and colliding counter-propagating shocks with time-resolved, point-projection X-ray backlighting ($\sim 20$ μm source size, 4.3 keV photon energy). Single shocks were imaged up to 100 ns after the onset of the laser drive, allowing to probe the growth of spatial nonuniformities in the shock apex. These results are compared with experiments looking at counter-propagating shocks, showing a symmetric drive that leads to a collision and stagnation from $\sim 40$ ns onward. We present a preliminary comparison with numerical simulations with the radiation hydrodynamics code ARWEN, which provides expected plasma parameters for the design of future experiments in this facility.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e27 (2021)
Modeling of three-dimensional exciplex pumped fluid Cs vapor laser with transverse and longitudinal gas flow
Chenyi Su, Xingqi Xu, Jinghua Huang, and Bailiang Pan

Considering the thermodynamical fluid mechanics in the gain medium and laser kinetic processes, a three-dimensional theoretical model of an exciplex-pumped Cs vapor laser with longitudinal and transverse gas flow is established. The slope efficiency of laser calculated by the model shows good agreement with the experimental data. The comprehensive three-dimensional distribution of temperature and particle density of Cs is depicted. The influence of pump intensity, wall temperature, and fluid velocity on the laser output performance is also simulated and analyzed in detail, suggesting that a higher wall temperature can guarantee a higher output laser power while causing a more significant heat accumulation in the cell. Compared with longitudinal gas flow, the transverse flow can improve the output laser power by effectively removing the generated heat accumulation and alleviating the temperature gradient in the cell.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e26 (2021)
High-power non-perturbative laser delivery diagnostics at the final focus of 100-TW-class laser pulses
Fumika Isono, Jeroen van Tilborg, Samuel K. Barber, Joseph Natal, Curtis Berger, Hai-En Tsai, Tobias Ostermayr, Anthony Gonsalves, Cameron Geddes, and Eric Esarey

Controlling the delivery of multi-terawatt and petawatt laser pulses to final focus, both in position and angle, is critical to many laser applications such as optical guiding, laser–plasma acceleration, and laser-produced secondary radiation. We present an online, non-destructive laser diagnostic, capable of measuring the transverse position and pointing angle at focus. The diagnostic is based on a unique double-surface-coated wedged-mirror design for the final steering optic in the laser line, producing a witness beam highly correlated with the main beam. By propagating low-power kilohertz pulses to focus, we observed spectra of focus position and pointing angle fluctuations dominated by frequencies below 70 Hz. The setup was also used to characterize the excellent position and pointing angle correlation of the 1 Hz high-power laser pulses to this low-power kilohertz pulse train, opening a promising path to fast non-perturbative feedback concepts even on few-hertz-class high-power laser systems.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e25 (2021)
Design of large mode area all-solid anti-resonant fiber for high-power lasers
Xin Zhang, Shoufei Gao, Yingying Wang, Wei Ding, and Pu Wang

High-power fiber lasers have experienced a dramatic development over the last decade. Further increasing the output power needs an upscaling of the fiber mode area, while maintaining a single-mode output. Here, we propose an all-solid anti-resonant fiber (ARF) structure, which ensures single-mode operation in broadband by resonantly coupling higher-order modes into the cladding. A series of fibers with core sizes ranging from 40 to 100 μm are proposed exhibiting maximum mode area exceeding 5000 μm2. Numerical simulations show this resonant coupling scheme provides a higher-order mode (mainly TE01, TM01, and HE21) suppression ratio of more than 20 dB, while keeping the fundamental mode loss lower than 1 dB/m. The proposed structure also exhibits high tolerance for core index depression.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e23 (2021)
1178 J, 527 nm near diffraction limited laser based on a complete closed-loop adaptive optics controlled off-axis multi-pass amplification laser system
Deen Wang, Xin Zhang, Wanjun Dai, Ying Yang, Xuewei Deng, Lin Chen, Xudong Xie, Dongxia Hu, Feng Jing, Zeping Yang, Qiang Yuan, Xiaofeng Wei, Qihua Zhu, Wanguo Zheng, Xiaomin Zhang, and Lei Huang

A 1178 J near diffraction limited 527 nm laser is realized in a complete closed-loop adaptive optics (AO) controlled off-axis multi-pass amplification laser system. Generated from a fiber laser and amplified by the pre-amplifier and the main amplifier, a 1053 nm laser beam with the energy of 1900 J is obtained and converted into a 527 nm laser beam by a KDP crystal with 62% conversion efficiency, 1178 J and beam quality of 7.93 times the diffraction limit (DL). By using a complete closed-loop AO configuration, the static and dynamic wavefront distortions of the laser system are measured and compensated. After correction, the diameter of the circle enclosing 80% energy is improved remarkably from 7.93DL to 1.29DL. The focal spot is highly concentrated and the 1178 J, 527 nm near diffraction limited laser is achieved.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e22 (2021)
Novel constant-cladding tapered-core ytterbium-doped fiber for high-power fiber laser oscillator
Yun Ye, Xianfeng Lin, Xiaoming Xi, Chen Shi, Baolai Yang, Hanwei Zhang, Xiaolin Wang, Jinyan Li, and Xiaojun Xu

Power scaling based on traditional ytterbium-doped fibers (YDFs) is limited by optical nonlinear effects and transverse mode instability (TMI) in high-power fiber lasers. Here, we propose a novel long tapered fiber with a constant cladding and tapered core (CCTC) along its axis direction. The tapered-core region of the fiber is designed to enhance the stimulated Raman scattering (SRS) threshold and suppress higher-order mode resonance in the laser cavity. The CCTC YDF was fabricated successfully with a modified chemical vapor deposition (MCVD) method combined with solution doping technology, which has a cladding diameter of 400 μm and a varying core with a diameter of ~24 μm at both ends and ~31 μm in the middle. To test the performance of the CCTC fiber during high-power operation, an all-fiber laser oscillator based on a CCTC YDF was investigated experimentally. As a result, a maximum output power of 3.42 kW was achieved with an optical-to-optical efficiency of 55.2%, although the TMI effect was observed at an output power of ~3.12 kW. The measured beam quality (M2 factor) was ~1.7, and no sign of the Raman component was observed in the spectrum. We believe that CCTC YDF has great potential to simultaneously mitigate the SRS and TMI effects, and further power scaling is promising by optimizing the structure of the YDF.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e21 (2021)
Effective suppression of mode distortion induced by stimulated Raman scattering in high-power fiber amplifiers
Wei Gao, Wenhui Fan, Pei Ju, Gang Li, Yanpeng Zhang, Aifeng He, Qi Gao, and Zhe Li

Mode distortion induced by stimulated Raman scattering (SRS) has become a new obstacle for the further development of high-power fiber lasers with high beam quality. Here, an approach for effective suppression of the SRS-induced mode distortion in high-power fiber amplifiers has been demonstrated experimentally by adjusting the seed power (output power of seed source) and forward feedback coefficient of the rear port in the seed source. It is shown that the threshold power of the SRS-induced mode distortion can be increased significantly by reducing the seed power or the forward feedback coefficient. Moreover, it has also been found that the threshold power is extremely sensitive to the forward feedback power value from the rear port. The influence of the seed power on the threshold power can be attributed to the fact that the seed power plays an important role in the effective length of the gain fiber in the amplifier. The influence of the forward feedback coefficient on the threshold power can be attributed to the enhanced SRS configuration because the end surface of the rear port together with the fiber in the amplifier constitutes a half-opening cavity. This suppression approach will be very helpful to further develop the high-power fiber amplifiers with high beam quality.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e20 (2021)
A novel laser shock post-processing technique on the laser-induced damage resistance of 1ω HfO2/SiO2 multilayer coatings
Tangyang Pu, Wenwen Liu, Yueliang Wang, Xiaoming Pan, Leiqing Chen, and Xiaofeng Liu

The laser shock processing implemented by a laser-induced high-pressure plasma which propagates into the sample as a shockwave is innovatively applied as a post-processing technique on HfO2/SiO2 multilayer coatings for the first time. The pure mechanical post-processing has provided evidence of a considerable promotion effect of the laser-induced damage threshold, which increased by a factor of about 4.6 with appropriate processing parameters. The promotion mechanism is confirmed to be the comprehensive modification of the intrinsic defects and the mechanical properties, which made the applicability of this novel post-processing technique on various types of coatings possible. Based on experiments, an interaction equation for the plasma pressure is established, which clarifies the existence of the critical pressure and provides a theoretical basis for selecting optimal processing parameters. In addition to the further clarification of the underlying damage mechanism, the laser shock post-processing provides a promising technique to realize the comprehensive and effective improvement of the laser-induced damage resistance of coatings.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e19 (2021)
A history of high-power laser research and development in the United Kingdom
Colin N. Danson, Malcolm White, John R. M. Barr, Thomas Bett, Peter Blyth, David Bowley, Ceri Brenner, Robert J. Collins, Neal Croxford, A. E. Bucker Dangor, Laurence Devereux, Peter E. Dyer, Anthony Dymoke-Bradshaw, Christopher B. Edwards, Paul Ewart, Allister I. Ferguson, John M. Girkin, Denis R. Hall, David C. Hanna, Wayne Harris, David I. Hillier, Christopher J. Hooker, Simon M. Hooker, Nicholas Hopps, Janet Hull, David Hunt, Dino A. Jaroszynski, Mark Kempenaars, Helmut Kessler, Sir Peter L. Knight, Steve Knight, Adrian Knowles, Ciaran L. S. Lewis, Ken S. Lipton, Abby Littlechild, John Littlechild, Peter Maggs, Graeme P. A. Malcolm, Stuart P. D. Mangles, William Martin, Paul McKenna, Richard O. Moore, Clive Morrison, Zulfikar Najmudin, David Neely, Geoff H. C. New, Michael J. Norman, Ted Paine, Anthony W. Parker, Rory R. Penman, Geoff J. Pert, Chris Pietraszewski, Andrew Randewich, Nadeem H. Rizvi, Nigel Seddon, Zheng-Ming Sheng, David Slater, Roland A. Smith, Christopher Spindloe, Roy Taylor, Gary Thomas, John W. G. Tisch, Justin S. Wark, Colin Webb, S. Mark Wiggins, Dave Willford, and Trevor Winstone

The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.

High Power Laser Science and Engineering
On the CoverJan. 01, 1900, Vol. 9 Issue 2 02000e18 (2021)
Innovative single-shot 2D pulse front tilt diagnostic
M. Galimberti, F. G. Bisesto, and M. Galletti

The presence of pulse front tilt (PFT), caused by angular dispersion (AD) in femtosecond laser pulses, could degrade the performance of the laser system and/or impact the experimental yields. We present a single-shot diagnostic capable of measuring the AD in the x–y plane by adopting an intensity mask. It can be applied to stretched pulses, making it ideal for diagnosing the AD along the amplification chain of a high-power laser system, and to ultrashort pulses exiting from an optical compressor. In this way, it can help in properly characterizing a laser pulse before it is delivered to the target area. In this Letter, we present experimental evidence of AD retrieval for different compression configurations, supported by theoretical analysis.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e16 (2021)
Smooth pulse recovery based on hybrid wavelet threshold denoising and first derivative adaptive smoothing filter
Xinlei Qian, Wei Fan, Xinghua Lu, and Xiaochao Wang

Based on the pulse-shaping unit in the front end of high-power laser facilities, we propose a new hybrid scheme in a closed-loop control system including wavelet threshold denoising for pretreatment and a first derivative adaptive smoothing filter for smooth pulse recovery, so as to effectively restrain the influence of electrical noise and FM-to-AM modulation in the time–power curve, and enhance the calibration accuracy of the pulse shape in the feedback control system. The related simulation and experiment results show that the proposed scheme can obtain a better shaping effect on the high-contrast temporal shape in comparison with the cumulative average algorithm and orthogonal matching pursuit algorithm combined with a traditional smoothing filter. The implementation of the hybrid scheme mechanism increased the signal-to-noise ratio of the laser pulse from about 11 dB to 30 dB, and the filtered pulse is smooth without modulation, with smoothness of about 98.8%.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e15 (2021)
High-power linear-polarization burst-mode all-fibre laser and generation of frequency-adjustable microwave signal
Xuan He, Bin Zhang, Shuailin Liu, Linyong Yang, Jinmei Yao, Qilin Wu, Yuxin Zhao, Tao Xun, and Jing Hou

Narrowband microwave generation with tuneable frequency is demonstrated by illuminating a photoconductive semiconductor switch (PCSS) with a burst-mode fibre laser. The whole system is composed of a high-power linearly polarized burst-mode pulsed fibre laser and a linear-state PCSS. To obtain a high-performance microwave signal, a desired envelope of burst is necessary and a pulse pre-compensation technique is adopted to avoid envelope distortion induced by the gain-saturation effect. Resulting from the technique, homogenous peak power distribution in each burst is ensured. The maximum energy of the laser burst pulse reaches 200 μJ with a burst duration of 100 ns at the average power of 10 W, corresponding to a peak power of 4 kW. When the PCSS is illuminated by the burst-mode fibre laser, narrowband microwave generation with tuneable frequency (0.80–1.12 GHz) is obtained with a power up to 300 W. To the best of the authors’ knowledge, it is the first demonstration of frequency-tuneable narrowband microwave generation based on a fibre laser. The high-power burst-mode fibre laser reported here has great potential for generating high-power arbitrary microwave signals for a great deal of applicable demands such as smart adaptive radar and intelligent high-power microwave systems.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e13 (2021)
Multi-octave-spanning supercontinuum generation through high-energy laser filaments in YAG and ZnSe pumped by a 2.4 μm femtosecond Cr:ZnSe laser
Sang-Hoon Nam, Garima C. Nagar, Dennis Dempsey, Ondřej Novák, Bonggu Shim, and Kyung-Han Hong

We present experimental and numerical investigations of high-energy mid-infrared filamentation with multi-octave-spanning supercontinuum generation (SCG), pumped by a 2.4 μm, 250 fs Cr:ZnSe chirped-pulse laser amplifier. The SCG is demonstrated in both anomalous and normal dispersion regimes with YAG and polycrystalline ZnSe, respectively. The formation of stable and robust single filaments along with the visible-to-mid-infrared SCG is obtained with a pump energy of up to 100 μJ in a 6-mm-long YAG medium. To the best of the authors’ knowledge, this is the highest-energy multi-octave-spanning SCG from a laser filament in a solid. On the other hand, the SCG and even-harmonic generation based on random quasi-phase matching (RQPM) are simultaneously observed from the single filaments in a 6-mm-long polycrystalline ZnSe medium with a pump energy of up to 15 μJ. The numerical simulations based on unidirectional pulse propagation equation and RQPM show excellent agreement with the measured multi-octave-spanning SCG and even-harmonic generation. They also reveal the temporal structure of mid-infrared filaments, such as soliton-like self-compression in YAG and pulse broadening in ZnSe.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e12 (2021)
Diode-pumped, electro-optically Q-switched, cryogenic Tm:YAG laser operating at 1.88 μm
Jörg Körner, Venkatesan Jambunathan, Fangxin Yue, Jürgen Reiter, Ondřej Slezák, Petr Navrátil, Samuel Paul David, Antonio Lucianetti, Joachim Hein, Tomáš Mocek, and Malte C. Kaluza

We present a diode-pumped, electro-optically Q-switched Tm:YAG laser with a cryogenically cooled laser crystal at 120 K. Output pulses of up to 2.55 mJ and 650 ns duration were demonstrated in an actively Q-switched configuration with a repetition rate of 1 Hz. By using cavity dumping the pulse duration was shortened to 18 ns with only a slightly lower output energy of 2.22 mJ. Furthermore, using a simplified rate equation model, we discuss design constraints on the pump fluence in a pulse pump approach for Tm:YAG to maximize the energy storage capability at a given pump power.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e11 (2021)
Overview and specifications of laser and target areas at the Intense Laser Irradiation Laboratory
Leonida A. Gizzi, Luca Labate, Federica Baffigi, Fernando Brandi, Giancarlo Bussolino, Lorenzo Fulgentini, Petra Köster, and Daniele Palla

We present the main features of the ultrashort, high-intensity laser installation at the Intense Laser Irradiation Laboratory (ILIL) including laser, beam transport and target area specifications. The laboratory was designed to host laser–target interaction experiments of more than 220 TW peak power, in flexible focusing configurations, with ultrarelativistic intensity on the target. Specifications have been established via dedicated optical diagnostic assemblies and commissioning interaction experiments. In this paper we give a summary of laser specifications available to users, including spatial, spectral and temporal contrast features. The layout of the experimental target areas is presented, with attention to the available configurations of laser focusing geometries and diagnostics. Finally, we discuss radiation protection measures and mechanical stability of the laser focal spot on the target.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 2 02000e10 (2021)
Emission mechanism for the silicon He-α lines in a photoionization experiment
Bo Han, Feilu Wang, David Salzmann, Jiayong Zhong, and Gang Zhao

In this paper, we present a reanalysis of the silicon He-$\mathrm{\alpha}$ X-ray spectrum emission in Fujioka et al.’s 2009 photoionization experiment. The computations were performed with our radiative-collisional code, RCF. The central ingredients of our computations are accurate atomic data, inclusion of satellite lines from doubly excited states and accounting for the reabsorption of the emitted photons on their way to the spectrometer. With all these elements included, the simulated spectrum turns out to be in good agreement with the experimental spectrum.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 1 010000e9 (2021)
Up conversion and excited state absorption analysis in the Tm:YAG disk laser multi-pass pumped by 1 μm laser
Enmao Song, Guangzhi Zhu, Hailin Wang, Hantian Chen, Yefeng Qian, Kozlov Aleksei, and Xiao Zhu

We present a 2 μm Tm:YAG disk laser multi-pass pumped by a 1 μm laser. The transitions in competition of up conversion (UC) and excited state absorption (ESA) are analyzed in detail based on a numerical model that considers stimulated emission, fluorescence, non-radiative decay, UC, andESA, showing good agreement with experiments. The proportions and fractional thermal loads of all transitions are derived quantitatively. The results show that UC and ESA are critical in Tm:YAG disk lasers, resulting in a decrease in the absorbed pump power and temperature after lasing for two different disk thicknesses. In addition, although the absorbed pump power of the 0.5 mm disk is lower than in the 1 mm case, its relatively weak UC and ESA and low total fractional thermal load can improve laser performance. A 0.5 mm Tm:YAG disk laser thus delivered the maximum output power of1.05 W with beam quality of Mx2 = 2.02 and My2 = 2.03.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 1 010000e8 (2021)
HPLSE editorial tribute to Professor David Neely
Colin Danson, and Paul McKenna

David Neely was an internationally recognised scientist who formed collaborations and friendships across the world. His passion for his work always shone through. He always made time for early-career scientists and became a mentor and supervisor to many. He was an active Editorial Board Member of the international journal High Power Laser Science and Engineering. Sadly, David was taken from us much too early. In this Editorial we pay tribute to his work through his publications in the journal.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 1 010000e7 (2021)
Reflecting petawatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit
Fabien Quéré, and Henri Vincenti

The quantum vacuum plays a central role in physics. Quantum electrodynamics (QED) predicts that the properties of the fermionic quantum vacuum can be probed by extremely large electromagnetic fields. The typical field amplitudes required correspond to the onset of the ‘optical breakdown’ of this vacuum, expected at light intensities >4.7×1029 W/cm2. Approaching this ‘Schwinger limit’ would enable testing of major but still unverified predictions of QED. Yet, the Schwinger limit is seven orders of magnitude above the present record in light intensity achieved by high-power lasers. To close this considerable gap, a promising paradigm consists of reflecting these laser beams off a mirror in relativistic motion, to induce a Doppler effect that compresses the light pulse in time down to the attosecond range and converts it to shorter wavelengths, which can then be focused much more tightly than the initial laser light. However, this faces a major experimental hurdle: how to generate such relativistic mirrors? In this article, we explain how this challenge could nowadays be tackled by using so-called ‘relativistic plasma mirrors’. We argue that approaching the Schwinger limit in the coming years by applying this scheme to the latest generation of petawatt-class lasers is a challenging but realistic objective.

High Power Laser Science and Engineering
Editors' Pick , EIC Choice AwardJan. 01, 1900, Vol. 9 Issue 1 010000e6 (2021)
Optical control of transverse motion of ionization injected electrons in a laser plasma accelerator
Jie Feng, Yifei Li, Jinguang Wang, Dazhang Li, Changqing Zhu, Junhao Tan, Xiaotao Geng, Feng Liu, and Liming Chen

We demonstrate an all-optical method for controlling the transverse motion of an ionization injected electron beam in a laser plasma accelerator by using the transversely asymmetrical plasma wakefield. The laser focus shape can control the distribution of a transversal wakefield. When the laser focus shape is changed from circular to slanted elliptical in the experiment, the electron beam profiles change from an ellipse to three typical shapes. The three-dimensional particle-in-cell simulation result agrees well with the experiment, and it shows that the trajectories of these accelerated electrons change from undulating to helical. Such an all-optical method could be useful for convenient control of the transverse motion of an electron beam, which results in synchrotron radiation from orbit angular momentum.

High Power Laser Science and Engineering
On the CoverJan. 01, 1900, Vol. 9 Issue 1 010000e5 (2021)
Highly efficient difference-frequency generation for mid-infrared pulses by passively synchronous seeding
Kun Huang, Yinqi Wang, Jianan Fang, Huaixi Chen, Minghang Xu, Qiang Hao, Ming Yan, and Heping Zeng

We have proposed and experimentally demonstrated a novel scheme for efficient mid-infrared difference-frequency generation based on passively synchronized fiber lasers. The adoption of coincident seeding pulses in the nonlinear conversion process could substantially lower the pumping threshold for mid-infrared parametric emission. Consequently, a picosecond mid-infrared source at 3.1 μm was prepared with watt-level average power, and a maximum power conversion efficiency of 77% was realized from pump to down-converted light. Additionally, the long-term stability of generated power was manifested with a relative fluctuation as low as 0.17% over one hour. Thanks to the all-optical passive synchronization and all-polarization-maintaining fiber architecture, the implemented laser system was also featured with simplicity, compactness and robustness, which would favor subsequent applications beyond laboratory operation.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 1 010000e4 (2021)
Reflecting laser-driven shocks in diamond in the megabar pressure range
K. Jakubowska, D. Mancelli, R. Benocci, J. Trela, I. Errea, A. S. Martynenko, P. Neumayer, O. Rosmej, B. Borm, A. Molineri, C. Verona, D. Cannatà, A. Aliverdiev, H. E. Roman, and D. Batani

In this work we present experimental results on the behavior of diamond at megabar pressure. The experiment was performed using the PHELIX facility at GSI in Germany to launch a planar shock into solid multi-layered diamond samples. The target design allows shock velocity in diamond and in two metal layers to be measured as well as the free surface velocity after shock breakout. As diagnostics, we used two velocity interferometry systems for any reflector (VISARs). Our measurements show that for the pressures obtained in diamond (between 3 and 9 Mbar), the propagation of the shock induces a reflecting state of the material. Finally, the experimental results are compared with hydrodynamical simulations in which we used different equations of state, showing compatibility with dedicated SESAME tables for diamond.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 9 Issue 1 010000e3 (2021)
Magnetic field annihilation and charged particle acceleration in ultra-relativistic laser plasmas
Yan-Jun Gu, and Sergei V. Bulanov

Magnetic reconnection driven by laser plasma interactions attracts great interests in the recent decades. Motivated by the rapid development of the laser technology, the ultra strong magnetic field generated by the laser-plasma accelerated electrons provides unique environment to investigate the relativistic magnetic field annihilation and reconnection. It opens a new way for understanding relativistic regimes of fast magnetic field dissipation particularly in space plasmas, where the large scale magnetic field energy is converted to the energy of the nonthermal charged particles. Here we review the recent results in relativistic magnetic reconnection based on the laser and collisionless plasma interactions. The basic mechanism and the theoretical model are discussed. Several proposed experimental setups for relativistic reconnection research are presented.

High Power Laser Science and Engineering
Editors' PickJan. 01, 1900, Vol. 9 Issue 1 010000e2 (2021)
A novel cleanliness control method for disk amplifiers
Yangshuai Li, Bingyan Wang, Panzheng Zhang, Yanli Zhang, Yanfeng Zhang, Shenlei Zhou, Weixin Ma, and Jianqiang Zhu

As the key part for energy amplification of high-power laser systems, disk amplifiers must work in an extremely clean environment. Different from the traditional cleanliness control scheme of active intake and passive exhaust (AIPE), a new method of active exhaust and passive intake (AEPI) is proposed in this paper. Combined with computational fluid dynamics (CFD) technology, through the optimization design of the sizes, shapes, and locations of different outlets and inlets, the turbulence that is unfavorable to cleanliness control is effectively avoided in the disk amplifier cavity during the process of AEPI. Finally, the cleanliness control of the cavity of the disk amplifier can be realized just by once exhaust. Meanwhile, the micro negative pressure environment in the amplifier cavity produced during the exhaust process reduces the requirement for sealing. This method is simple, time saving, gas saving, efficient, and safe. It is also suitable for the cleanliness control of similar amplifiers.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 8 Issue 4 04000e45 (2020)
Strong-field effects induced in the extreme ultraviolet domain
I. Makos, I. Orfanos, E. Skantzakis, I. Liontos, P. Tzallas, A. Forembski, L. A. A. Nikolopoulos, and D. Charalambidis

Motivated by the achieved high intensities of novel extreme ultraviolet (XUV) radiation sources, such as free electron lasers and laser-driven high harmonic generation beamlines, we elaborate on their perspective in inducing observable strong field effects. The feasibility of extending such effects from the infrared and visible spectral regimes in the XUV domain is supported through numerically calculated models of near-future experiments. We highlight the advancement of performing studies in the time domain, using ultra-short XUV pulses, which allows for the temporal evolution of such effects to be followed. Experimental and theoretical obstacles and limitations are further discussed.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 8 Issue 4 04000e44 (2020)
High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability
François Lureau, Guillaume Matras, Olivier Chalus, Christophe Derycke, Thomas Morbieu, Christophe Radier, Olivier Casagrande, Sébastien Laux, Sandrine Ricaud, Gilles Rey, Alain Pellegrina, Caroline Richard, Laurent Boudjemaa, Christophe Simon-Boisson, Andrei Baleanu, Romeo Banici, Andrei Gradinariu, Constantin Caldararu, Bertrand De Boisdeffre, Petru Ghenuche, Andrei Naziru, Georgios Kolliopoulos, Liviu Neagu, Razvan Dabu, Ioan Dancus, and Daniel Ursescu

We report on a two-arm hybrid high-power laser system (HPLS) able to deliver 2 × 10 PW femtosecond pulses, developed at the Bucharest-Magurele Extreme Light Infrastructure Nuclear Physics (ELI-NP) Facility. A hybrid front-end (FE) based on a Ti:sapphire chirped pulse amplifier and a picosecond optical parametric chirped pulse amplifier based on beta barium borate (BBO) crystals, with a cross-polarized wave (XPW) filter in between, has been developed. It delivers 10 mJ laser pulses, at 10 Hz repetition rate, with more than 70 nm spectral bandwidth and high-intensity contrast, in the range of 1013:1. The high-energy Ti:sapphire amplifier stages of both arms were seeded from this common FE. The final high-energy amplifier, equipped with a 200 mm diameter Ti:sapphire crystal, has been pumped by six 100 J nanosecond frequency doubled Nd:glass lasers, at 1 pulse/min repetition rate. More than 300 J output pulse energy has been obtained by pumping with only 80% of the whole 600 J available pump energy. The compressor has a transmission efficiency of 74% and an output pulse duration of 22.7 fs was measured, thus demonstrating that the dual-arm HPLS has the capacity to generate 10 PW peak power femtosecond pulses. The reported results represent the cornerstone of the ELI-NP 2 × 10 PW femtosecond laser facility, devoted to fundamental and applied nuclear physics research.

High Power Laser Science and Engineering
On the CoverJan. 01, 1900, Vol. 8 Issue 4 04000e43 (2020)
A perspective on high photon flux nonclassical light and applications in nonlinear optics
Th. Lamprou, I. Liontos, N. C. Papadakis, and P. Tzallas

Nonclassical light sources have a vital role in quantum optics as they offer a unique resource for studies in quantum technology. However, their applicability is restricted by their low intensity, while the development of new schemes producing intense nonclassical light is a challenging task. In this perspective article, we discuss potential schemes that could be used towards the development of high photon flux nonclassical light sources and their future prospects in nonlinear optics.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 8 Issue 4 04000e42 (2020)
Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments
Dahui Wang, Yinren Shou, Pengjie Wang, Jianbo Liu, Zhusong Mei, Zhengxuan Cao, Jianmin Zhang, Pengling Yang, Guobin Feng, Shiyou Chen, Yanying Zhao, Joerg Schreiber, and Wenjun Ma

Single-shot laser-induced damage threshold (LIDT) measurements of multi-type free-standing ultrathin foils were performed in a vacuum environment for 800 nm laser pulses with durations τ ranging from 50 fs to 200 ps. The results show that the laser damage threshold fluences (DTFs) of the ultrathin foils are significantly lower than those of corresponding bulk materials. Wide band gap dielectric targets such as SiN and formvar have larger DTFs than semiconductive and conductive targets by 1–3 orders of magnitude depending on the pulse duration. The damage mechanisms for different types of targets are studied. Based on the measurement, the constrain of the LIDTs on the laser contrast is discussed.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 8 Issue 4 04000e41 (2020)
Photonic crystal rod-based high-performance ultrafast fiber laser system
Zhiguo Lv, Zhi Yang, Qianglong Li, Feng Li, Yishan Wang, Wei Zhao, and Xiaojun Yang

In this paper, we innovatively conduct a Porro prism-based beam pointing stability promotion technique research and realize a high-performance rod-type photonic crystal fiber-based chirped pulse amplification (CPA) system, mainly including a frequency-reduced all-fiber pre-amplification stage, photonic crystal rod-based main amplification stage, and 1600 lines/mm transmission grating-pair compressor. Laser output with average power of 50 W, repetition rates of 500 kHz, pulse energy of 100 μJ, pulse duration of 830 fs, beam quality of M2<1.3, power fluctuation of 0.55% root mean square, and beam pointing drift of 19 μrad/°C over 8 h is realized. The high-performance laser system has an enormous application potential in fundamental research and precision manufacturing fields.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 8 Issue 4 04000e40 (2020)
Single-frequency and free-running operation of a single-pass pulsed Ho:YLF amplifier
Yunpeng Wang, Youlun Ju, Tongyu Dai, Dong Yan, and Baoquan Yao

A single-frequency pulsed holmium-doped yttrium lithium fluoride (Ho:YLF) amplifier pumped by a Tm-doped fiber laser was demonstrated. The seed was an injection-seeded Q-switched Ho:YLF laser. The output energy from the single-frequency pulsed amplifier was 24.2 mJ, with a pulse width of 250 ns at a pulse repetition frequency (PRF) of 100 Hz. The energy stability during 30 min was improved to 1% after the single-frequency pulsed Ho:YLF laser was amplified. The line width of the single-frequency pulsed spectrum of the Ho:YLF amplifier was 2.81 MHz. The single-frequency pulsed Ho:YLF amplifier can be applied to differential absorption lidar (DIAL), since its output spectrum is around the P12 CO2 absorption line.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 8 Issue 4 04000e39 (2020)
Asymmetric pulse effects on pair production in polarized electric fields
Obulkasim Olugh, Zi-Liang Li, and Bai-Song Xie

Using the Dirac–Heisenberg–Wigner formalism, effects of the asymmetric pulse shape on the generation of electron-positron pairs in three typical polarized fields, i.e., linear, middle elliptical and circular fields, are investigated. Two kinds of asymmetries for the falling pulse length, short and elongated, are studied. We find that the interference effect disappears with the shorter pulse length and that the peak value of the momentum spectrum is concentrated in the center of the momentum space. In the case of the extending falling pulse length, a multiring structure without interference appears in the momentum spectrum. Research results show that the momentum spectrum is very sensitive to the asymmetry of the pulse as well as to the polarization of the fields. We also find that the number density of electron-positron pairs under different polarizations is sensitive to the asymmetry of the electric field. For the short falling pulse, the number density can be significantly enhanced by over two orders of magnitude. These results could be useful in planning high-power and/or high-intensity laser experiments.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 8 Issue 4 04000e38 (2020)
Potential damage threats to downstream optics caused by Gaussian mitigation pits on rear KDP surface
Hao Yang, Jian Cheng, Zhichao Liu, Qi Liu, Linjie Zhao, Chao Tan, Jian Wang, and Mingjun Chen

To determine whether a potassium dihydrogen phosphate (KDP) surface mitigated by micro-milling would potentially threaten downstream optics, we calculated the light-field modulation based on angular spectrum diffraction theory, and performed a laser damage test on downstream fused silica. The results showed that the downstream light intensification caused by a Gaussian mitigation pit of 800 μm width and 10 μm depth reached a peak value near the KDP rear surface, decreased sharply afterward, and eventually kept stable with the increase in downstream distance. The solved peak value of light intensification exceeded 6 in a range 8–19 mm downstream from the KDP rear surface, which is the most dangerous for downstream optics. Laser damage sites were then induced on the fused silica surface in subsequent laser damage tests. When the distance downstream was greater than 44 mm with a downstream light intensification of less than 3, there were no potential damage threats to downstream optics. The study proves that a mitigated KDP surface can cause laser damage to downstream optical components, to which attention should be paid in an actual application. Through this work, we find that the current manufacturing process and the mitigation index still need to be improved. The research methods and calculation models are also of great reference significance for related studies like optics mitigation and laser damage.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 8 Issue 4 04000e37 (2020)
A Yb:KGW dual-crystal regenerative amplifier
Huijun He, Jun Yu, Wentao Zhu, Xiaoyang Guo, Cangtao Zhou, and Shuangchen Ruan

This study develops a Yb:KGW dual-crystal based regenerative amplifier. The thermal lensing and gain-narrowing effects are compensated by the dual-crystal configuration. Sub-nanojoule pulses are amplified to 1.5 mJ with 9 nm spectral bandwidth and 1 kHz repetition rate using chirped pulse amplification technology. Consequently, 1.2 mJ pulses with a pulse duration of 227 fs are obtained after compression. Thanks to the cavity design, the output laser was a near diffraction limited beam with M2 around 1.1. The amplifier has the potential to boost energy above 2 mJ after compression and act as a front end for a future kilohertz terawatt-class diode-pumped Yb:KGW laser system.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 8 Issue 4 04000e35 (2020)
Gamma-ray generation from ultraintense laser-irradiated solid targets with preplasma
Xiang-Bing Wang, Guang-Yue Hu, Zhi-Meng Zhang, Yu-Qiu Gu, Bin Zhao, Yang Zuo, and Jian Zheng

In the laser plasma interaction of quantum electrodynamics (QED)-dominated regime, γ-rays are generated due to synchrotron radiation from high-energy electrons traveling in a strong background electromagnetic field. With the aid of 2D particle-in-cell code including QED physics, we investigate the preplasma effect on the γ-ray generation during the interaction between an ultraintense laser pulse and solid targets. We found that with the increasing preplasma scale length, the γ-ray emission is enhanced significantly and finally reaches a steady state. Meanwhile, the γ-ray beam becomes collimated. This shows that, in some cases, the preplasmas will be piled up acting as a plasma mirror in the underdense preplasma region, where the γ-rays are produced by the collision between the forward electrons and the reflected laser fields from the piled plasma. The piled plasma plays the same role as the usual reflection mirror made from a solid target. Thus, a single solid target with proper scale length preplasma can serve as a manufactural and robust γ-ray source.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 8 Issue 4 04000e34 (2020)
Ultra-broadband all-OPCPA petawatt facility fully based on LBO
Mario Galletti, Pedro Oliveira, Marco Galimberti, Munadi Ahmad, Giedre Archipovaite, Nicola Booth, Emerald Dilworth, Andy Frackiewicz, Trevor Winstone, Ian Musgrave, and Cristina Hernandez-Gomez

A petawatt facility fully based on noncollinear optical parametric chirped pulse amplification (NOPCPA) technology, Vulcan OPPEL (Vulcan OPCPA PEtawatt Laser), is presented. This system will be coupled with the existing hybrid-CPA/OPCPA VULCAN laser system (500 J, 500 fs beamline; 250 J, ns regime beamline) based on Nd:glass amplification. Its pulse duration (20 times shorter) combined with the system design will allow the auxiliary beamline and its secondary sources to be used as probe beams for longer pulses and their interactions with targets. The newly designed system will be mainly dedicated to electron beam generation, but could also be used to perform a variety of particle acceleration and optical radiation detection experimental campaigns. In this communication, we present the entire beamline design discussing the technology choices and the design supported by extensive simulations for each system section. Finally, we present experimental results and details of our commissioned NOPCPA picosecond front end, delivering 1.5 mJ, ~180 nm (1/e2) of bandwidth compressed to sub-15 fs.

High Power Laser Science and Engineering
Editors' PickJan. 01, 1900, Vol. 8 Issue 4 04000e31 (2020)
Spatiotemporal characterization of laser pulse amplification in double-pass active mirror geometry
Tinghao Liu, Qiang Liu, Zhan Sui, Mali Gong, and Xing Fu

We present a spatiotemporal model of pulse amplification in the double-pass active mirror (AM) geometry. Three types of overlap condition are studied, and the spatiotemporal scaling under the four-pulse overlapping (4PO) condition is fully characterized for the first time, by mapping the temporal and spatial segments of beam to the instantaneous gain windows. Furthermore, the influence of spatiotemporal overlaps on the amplified energy, pulse distortion and intensity profile is unraveled for both AM and zigzag configurations. The model, verified by excellent agreement between the predicted and measured results, can be a powerful tool for designing and optimizing high energy multi-pass solid-state laser amplifiers with AM, zigzag and other geometries.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 8 Issue 3 03000e30 (2020)
Ultra-broadband near-infrared NOPAs based on the nonlinear crystals BiBO and YCOB
Mario Galletti, Hugo Pires, Victor Hariton, Joana Alves, Pedro Oliveira, Marco Galimberti, and Gonçalo Figueira

We evaluate and demonstrate ultra-broadband near-infrared noncollinear optical parametric amplification in two nonlinear crystals, bismuth borate (BiBO) and yttrium calcium oxyborate (YCOB), which are not commonly used for this application. The spectral bandwidth is of the microjoule level; the amplified signal is ≥ 200 nm, capable of supporting sub-10 fs pulses. These results, supported by numerical simulations, show that these crystals have a great potential as nonlinear media in both low-energy, few-cycle systems and high peak power amplifiers for terawatt to petawatt systems based on noncollinear optical parametric chirped pulse amplification (NOPCPA) or a hybrid.

High Power Laser Science and Engineering
On the CoverJan. 01, 1900, Vol. 8 Issue 3 03000e29 (2020)
Decoupling of the position and angular errors in laser pointing with a neural network method
Lei Xia, Yuanzhang Hu, Wenyu Chen, and Xiaoguang Li

In laser-pointing-related applications, when only the centroid of a laser spot is considered, then the position and angular errors of the laser beam are often coupled together. In this study, the decoupling of the position and angular errors is achieved from one single spot image by utilizing a neural network technique. In particular, the successful application of the neural network technique relies on novel experimental procedures, including using an appropriate small-focal-length lens and tilting the detector, to physically enlarge the contrast of different spots. This technique, with the corresponding new system design, may prove to be instructive in the future design of laser-pointing-related systems.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 8 Issue 3 03000e28 (2020)
Efficient idler broadening via oppositely dual-chirped difference frequency generation
Haizhe Zhong, Bin Hu, Saisai Hu, Shengying Dai, Ying Li, and Dianyuan Fan

Dual-chirped difference frequency generation (DFG) is an advantageous technique for generating the broadband mid-infrared (IR) idler wave, which is inaccessible by a population-inversion-based laser system. In principle, the generated idler wave may even suffer a spectrum broadening compared with the driving pulsed lasers if the pump and signal waves are oppositely chirped. However, broadband phase-matching is always the determining factor for the resulting efficiency and the bandwidth of the generated idler wave. In this study, specific to an oppositely dual-chirped DFG scheme, we derive the precondition to realize broadband frequency conversion, wherein a negative $(1/\unicode[STIX]{x1D710}_{p}-1/\unicode[STIX]{x1D710}_{i})/(1/\unicode[STIX]{x1D710}_{s}-1/\unicode[STIX]{x1D710}_{i})$, in terms of the correlation coefficient of the group velocity ($\unicode[STIX]{x1D70E}$), is necessary. However, most birefringence bulk crystals can only provide the required material dispersions in limited spectral regions. We show that the periodically poled lithium niobate crystal that satisfies an inactive Type-II (eo-o) quasi-phase-matching condition has a stable negative $\unicode[STIX]{x1D70E}$ and exerts the expected broadband gain characteristic across an ultra-broad idler spectral region $(1.7{-}4.0~\unicode[STIX]{x03BC}\text{m})$. Finally, we propose and numerically verify a promising DFG configuration to construct a tunable mid-IR spectrum broader based on the broadband phase-matched oppositely dual-chirped DFG scheme.

High Power Laser Science and Engineering
Jun. 29, 2020, Vol. 8 Issue 2 02000e27 (2020)
Clean source of soft X-ray radiation formed in supersonic Ar gas jets by high-contrast femtosecond laser pulses of relativistic intensity
Maria Alkhimova, Sergey Ryazantsev, Igor Skobelev, Alexey Boldarev, Jie Feng, Xin Lu, Li-Ming Chen, and Sergey Pikuz

In this work, we optimized a clean, versatile, compact source of soft X-ray radiation $(E_{\text{x}\text{-}\text{ray}}\sim 3~\text{keV})$ with an yield per shot up to $7\times 10^{11}~\text{photons}/\text{shot}$ in a plasma generated by the interaction of high-contrast femtosecond laser pulses of relativistic intensity $(I_{\text{las}}\sim 10^{18}{-}10^{19}~\text{W}/\text{cm}^{2})$ with supersonic argon gas jets. Using high-resolution X-ray spectroscopy approaches, the dependence of main characteristics (temperature, density and ionization composition) and the emission efficiency of the X-ray source on laser pulse parameters and properties of the gas medium was studied. The optimal conditions, when the X-ray photon yield reached a maximum value, have been found when the argon plasma has an electron temperature of $T_{\text{e}}\sim 185~\text{eV}$, an electron density of $N_{\text{e}}\sim 7\times 10^{20}~\text{cm}^{-3}$ and an average charge of $Z\sim 14$. In such a plasma, a coefficient of conversion to soft X-ray radiation with energies $E_{\text{x}\text{-}\text{ray}}\sim 3.1\;(\pm 0.2)~\text{keV}$ reaches $8.57\times 10^{-5}$, and no processes leading to the acceleration of electrons to MeV energies occur. It was found that the efficiency of the X-ray emission of this plasma source is mainly determined by the focusing geometry. We confirmed experimentally that the angular distribution of the X-ray radiation is isotropic, and its intensity linearly depends on the energy of the laser pulse, which was varied in the range of 50–280 mJ. We also found that the yield of X-ray photons can be notably increased by, for example, choosing the optimal laser pulse duration and the inlet pressure of the gas jet.

High Power Laser Science and Engineering
Jun. 29, 2020, Vol. 8 Issue 2 02000e26 (2020)
Enhancement of the laser-driven proton source at PHELIX
J. Hornung, Y. Zobus, P. Boller, C. Brabetz, U. Eisenbarth, T. Kühl, Zs. Major, J. B. Ohland, M. Zepf, B. Zielbauer, and V. Bagnoud

We present a study of laser-driven ion acceleration with micrometre and sub-micrometre thick targets, which focuses on the enhancement of the maximum proton energy and the total number of accelerated particles at the PHELIX facility. Using laser pulses with a nanosecond temporal contrast of up to $10^{-12}$ and an intensity of the order of $10^{20}~\text{W}/\text{cm}^{2}$, proton energies up to 93 MeV are achieved. Additionally, the conversion efficiency at $45^{\circ }$ incidence angle was increased when changing the laser polarization to p, enabling similar proton energies and particle numbers as in the case of normal incidence and s-polarization, but reducing the debris on the last focusing optic.

High Power Laser Science and Engineering
Jun. 23, 2020, Vol. 8 Issue 2 02000e24 (2020)
Simultaneous observation of ultrafast electron and proton beams in TNSA
Fabrizio Bisesto, Mario Galletti, Maria Pia Anania, Gemma Costa, Massimo Ferrario, Riccardo Pompili, Arie Zigler, Fabrizio Consoli, Mattia Cipriani, Martina Salvadori, and Claudio Verona

The interaction of ultra-intense high-power lasers with solid-state targets has been largely studied for the past 20 years as a future compact proton and ion source. Indeed, the huge potential established on the target surface by the escaping electrons provides accelerating gradients of TV/m. This process, called target normal sheath acceleration, involves a large number of phenomena and is very difficult to study because of the picosecond scale dynamics. At the SPARC_LAB Test Facility, the high-power laser FLAME is employed in experiments with solid targets, aiming to study possible correlations between ballistic fast electrons and accelerated protons. In detail, we have installed in the interaction chamber two different diagnostics, each one devoted to characterizing one beam. The first relies on electro-optic sampling, and it has been adopted to completely characterize the ultrafast electron components. On the other hand, a time-of-flight detector, based on chemical-vapour-deposited diamond, has allowed us to retrieve the proton energy spectrum. In this work, we report preliminary studies about simultaneous temporal resolved measurements of both the first forerunner escaping electrons and the accelerated protons for different laser parameters.

High Power Laser Science and Engineering
Jun. 10, 2020, Vol. 8 Issue 2 02000e23 (2020)
Improved stability of a compact vacuum-free laser-plasma X-ray source
L. Martín, J. Benlliure, D. Cortina-Gil, J. Pe?as, and C. Ruiz

We report the development of a stable high-average power X-ray source generated by the interaction of ultrashort laser pulses (35 fs, 1 mJ, 1 kHz) with a solid target in air. The achieved source stability, which is essential for the applications foreseen for these laser-driven plasma accelerators, is due to the combination of precise positioning of the target on focus and the development of a fast rotating target system able to ensure the refreshment of the material at every shot while minimizing positioning errors with respect to the focal spot. This vacuum-free laser-plasma X-ray source provides an average dose rate of 1.5 Sv/h at 30 cm and a repeatability better than 93% during more than 36 min of continuous operation per target.

High Power Laser Science and Engineering
May. 09, 2020, Vol. 8 Issue 2 02000e18 (2020)
Tunable optical frequency comb from a compact and robust Er:fiber laser
Zhiwei Zhu, Yang Liu, Daping Luo, Chenglin Gu, Lian Zhou, Gehui Xie, Zejiang Deng, and Wenxue Li

We report on a compact and robust self-referenced optical frequency comb with a tunable repetition rate, generated by an all-polarization-maintaining (PM) mode-locked Er-doped fiber laser. The spacing between comb teeth can be tuned above 300 kHz at a repetition rate of 101 MHz. The repetition rate and the carrier–envelope offset of the laser are stabilized separately, and the relative residual phase noises are determined to be $336~\unicode[STIX]{x03BC}\text{rad}$ and 713 mrad (1 Hz–1 MHz). The accurate frequency characteristics and the stable structure show great potential for the use of such a comb in applications of precision measurements.

High Power Laser Science and Engineering
May. 09, 2020, Vol. 8 Issue 2 02000e17 (2020)
Generation mechanism of 100 MG magnetic fields in the interaction of ultra-intense laser pulse with nanostructured target
J. M. Tian, H. B. Cai, W. S. Zhang, E. H. Zhang, B. Du, and S. P. Zhu

Experimental and simulation data [Moreau et al., Plasma Phys. Control. Fusion 62, 014013 (2019); Kaymak et al., Phys. Rev. Lett. 117, 035004 (2016)] indicate that self-generated magnetic fields play an important role in enhancing the flux and energy of relativistic electrons accelerated by ultra-intense laser pulse irradiation with nanostructured arrays. A fully relativistic analytical model for the generation of the magnetic field based on electron magneto-hydrodynamic description is presented here. The analytical model shows that this self-generated magnetic field originates in the nonparallel density gradient and fast electron current at the interfaces of a nanolayered target. A general formula for the self-generated magnetic field is found, which closely agrees with the simulation scaling over the relevant intensity range. The result is beneficial to the experimental designs for the interaction of the laser pulse with the nanostructured arrays to improve laser-to-electron energy coupling and the quality of forward hot electrons.

High Power Laser Science and Engineering
May. 08, 2020, Vol. 8 Issue 2 02000e16 (2020)
Relativistic electron acceleration by surface plasma waves excited with high intensity laser pulses
X. M. Zhu, R. Prasad, M. Swantusch, B. Aurand, A. A. Andreev, O. Willi, and M. Cerchez

The process of high energy electron acceleration along the surface of grating targets (GTs) that were irradiated by a relativistic, high-contrast laser pulse at an intensity $I=2.5\times 10^{20}~\text{W}/\text{cm}^{2}$ was studied. Our experimental results demonstrate that for a GT with a periodicity twice the laser wavelength, the surface electron flux is more intense for a laser incidence angle that is larger compared to the resonance angle predicted by the linear model. An electron beam with a peak charge of ${\sim}2.7~\text{nC}/\text{sr}$, for electrons with energies ${>}1.5~\text{MeV}$, was measured. Numerical simulations carried out with parameters similar to the experimental conditions also show an enhanced electron flux at higher incidence angles depending on the preplasma scale length. A theoretical model that includes ponderomotive effects with more realistic initial preplasma conditions suggests that the laser-driven intensity and preformed plasma scale length are important for the acceleration process. The predictions closely match the experimental and computational results.

High Power Laser Science and Engineering
Apr. 30, 2020, Vol. 8 Issue 2 02000e15 (2020)
Two-micron all-fiberized passively mode-locked fiber lasers with high-energy nanosecond pulse
Meng Wang, Yijian Huang, Zongpeng Song, Jincheng Wei, Jihong Pei, and Shuangchen Ruan

We report on mode-locked thulium-doped fiber lasers with high-energy nanosecond pulses, relying on the transmission in a semiconductor saturable absorber (SESA) and a carbon nanotube (CNTs-PVA) film separately. A section of an SMF–MMF–SMF structure multimode interferometer with a transmission peak wavelength of ~2003 nm was used as a wavelength selector to fix the laser wavelength. When the SESA acted as a saturable absorber (SA), the mode-locked fiber laser had a maximum output power of ~461 mW with a pulse energy of ~0.14 μJ and a pulse duration of ~9.14 ns. In a CNT-film-based mode-locked fiber laser, stable mode-locked pulses with the maximum output power of ~46 mW, pulse energy of ~26.8 nJ and pulse duration of ~9.3 ns were obtained. To the best of our knowledge, our experiments demonstrated the first 2 μm region ‘real’ SA-based dissipative soliton resonance with the highest mode-locked pulse energy from a ‘real’ SA-based all-fiberized resonator.

High Power Laser Science and Engineering
Apr. 30, 2020, Vol. 8 Issue 2 02000e14 (2020)
Thermal lens analysis in a diode-pumped 10 Hz 100 mJ Yb:YAG amplifier
Victor Hariton, Celso Paiva Jo?o, Hugo Pires, Mario Galletti, and Gon?alo Figueira

We address the power scaling issue in end-pumped laser rod amplifiers by studying, experimentally and numerically, the magnitude of thermal lensing in a high-energy diode-pumped Yb:YAG crystal. The spatio-temporal temperature profile of the gain medium and the focal length of the induced thermal lens are determined numerically. The influence of the repetition rate and pumping power on the temperature distribution is analyzed. Experimental measurements covered repetition rates between 1 and 10 Hz and up to 4 kW pumping power.

High Power Laser Science and Engineering
Apr. 21, 2020, Vol. 8 Issue 2 02000e13 (2020)
High-power long-wave infrared laser based on polarization beam coupling technique
Yingjie Shen, Chuanpeng Qian, Xiaoming Duan, and Ruijun Lan

We demonstrated a high-power long-wave infrared laser based on a polarization beam coupling technique. An average output power at $8.3~\unicode[STIX]{x03BC}\text{m}$ of 7.0 W was achieved at a maximum available pump power of 107.6 W, corresponding to an optical-to-optical conversion of 6.5%. The coupling efficiency of the polarization coupling system was calculated to be approximately 97.2%. With idler single resonance operation, a good beam quality factor of ${\sim}1.8$ combined with an output wavelength of $8.3~\unicode[STIX]{x03BC}\text{m}$ was obtained at the maximum output power.

High Power Laser Science and Engineering
Apr. 21, 2020, Vol. 8 Issue 2 02000e12 (2020)
Proton deflectometry of a capacitor coil target along two axes
P. Bradford, M. P. Read, M. Ehret, L. Antonelli, M. Khan, N. Booth, K. Glize, D. Carroll, R. J. Clarke, R. Heathcote, S. Ryazantsev, S. Pikuz, C. Spindloe, J. D. Moody, B. B. Pollock, V. T. Tikhonchuk, C. P. Ridgers, J. J. Santos, and N. C. Woolsey

A developing application of laser-driven currents is the generation of magnetic fields of picosecond–nanosecond duration with magnitudes exceeding $B=10~\text{T}$. Single-loop and helical coil targets can direct laser-driven discharge currents along wires to generate spatially uniform, quasi-static magnetic fields on the millimetre scale. Here, we present proton deflectometry across two axes of a single-loop coil ranging from 1 to 2 mm in diameter. Comparison with proton tracking simulations shows that measured magnetic fields are the result of kiloampere currents in the coil and electric charges distributed around the coil target. Using this dual-axis platform for proton deflectometry, robust measurements can be made of the evolution of magnetic fields in a capacitor coil target.

High Power Laser Science and Engineering
Editors' PickApr. 22, 2020, Vol. 8 Issue 2 02000e11 (2020)
High-power operation of double-pass pumped Nd:YVO4 thin disk laser
Wei Wang, Di Sun, Xiao Du, Jie Guo, and Xiaoyan Liang

A simple, compact, double-pass pumped Nd:YVO4 thin disk laser is demonstrated. Its continuous-wave performance with different Nd doping concentrations and thicknesses is investigated experimentally. The maximum output power of 17.7 W is achieved by employing a 0.5 at.% doped sample, corresponding to an optical-to-optical efficiency of 46% with respect to the absorbed pump power. In addition, a numerical analysis and an experimental study of the temperature distribution, and thermal lens effect of the Nd:YVO4 thin disk, are presented considering the influence of the energy transfer upconversion effect and the temperature dependence of the thermal conductivity tensor. The simulated results are in good agreement with the experimental results.

High Power Laser Science and Engineering
Apr. 03, 2020, Vol. 8 Issue 1 01000e10 (2020)
Laser-system model for enhanced operational performance and flexibility on OMEGA EP
M. J. Guardalben, M. Barczys, B. E. Kruschwitz, M. Spilatro, L. J. Waxer, and E. M. Hill

The development of laser performance models having real-time prediction capability for the OMEGA EP laser system has been essential in meeting requests from its user community for increasingly complex pulse shapes that span a wide range of energies. The laser operations model PSOPS provides rapid and accurate predictions of OMEGA EP laser-system performance in both forward and backward directions, a user-friendly interface and rapid optimization capability between shots. We describe the model’s features and show how PSOPS has allowed real-time optimization of the laser-system configuration in order to satisfy the demands of rapidly evolving experimental campaign needs. We also discuss several enhancements to laser-system performance accuracy and flexibility enabled by PSOPS.

High Power Laser Science and Engineering
On the CoverMar. 27, 2020, Vol. 8 Issue 1 010000e8 (2020)
Hydrodynamic computational modelling and simulations of collisional shock waves in gas jet targets
Stylianos Passalidis, Oliver C. Ettlinger, George S. Hicks, Nicholas P. Dover, Zulfikar Najmudin, Emmanouil P. Benis, Evaggelos Kaselouris, Nektarios A. Papadogiannis, Michael Tatarakis, and Vasilis Dimitriou

We study the optimization of collisionless shock acceleration of ions based on hydrodynamic modelling and simulations of collisional shock waves in gaseous targets. The models correspond to the specifications required for experiments with the $\text{CO}_{2}$ laser at the Accelerator Test Facility at Brookhaven National Laboratory and the Vulcan Petawatt system at Rutherford Appleton Laboratory. In both cases, a laser prepulse is simulated to interact with hydrogen gas jet targets. It is demonstrated that by controlling the pulse energy, the deposition position and the backing pressure, a blast wave suitable for generating nearly monoenergetic ion beams can be formed. Depending on the energy absorbed and the deposition position, an optimal temporal window can be determined for the acceleration considering both the necessary overdense state of plasma and the required short scale lengths for monoenergetic ion beam production.

High Power Laser Science and Engineering
Editors' PickMar. 27, 2020, Vol. 8 Issue 1 010000e7 (2020)
Rapid growth of a long-seed KDP crystal
Duanyang Chen, Bin Wang, Hu Wang, Xiangyu Zhu, Ziyuan Xu, Yuanan Zhao, Shenghao Wang, Kaizao Ni, Lili Zheng, Hui Zhang, Hongji Qi, and Jianda Shao

To reduce the seed length while maintaining the advantages of the cuboid KDP-type crystal, a long-seed KDP crystal with size $471~\text{mm}\times 480~\text{mm}\times 400~\text{mm}$ is rapidly grown. With almost the same high cutting efficiency to obtain third harmonic generation oriented samples, this long-seed KDP-type crystal can be grown with a shorter seed than that of the cuboid KDP-type crystal. The full width at half maximum of the high-resolution X-ray diffraction of the (200) crystalline face is 28.8 arc seconds, indicating that the long-seed KDP crystal has good crystalline quality. In the wavelength range of 377–1022 nm, the transmittance of the long-seed KDP crystal is higher than 90%. The fluence for the 50% probability of laser-induced damage (LID) is $18.5~\text{J}/\text{cm}^{2}$ (3 ns, 355 nm). Several test points survive when the laser fluence exceeds $30~\text{J}/\text{cm}^{2}$ (3 ns, 355 nm), indicating the good LID performance of the long-seed KDP crystal. At present, the growth of a long-seed DKDP crystal is under way.

High Power Laser Science and Engineering
Feb. 20, 2020, Vol. 8 Issue 1 010000e6 (2020)
The 1 PW/0.1 Hz laser beamline in SULF facility
Zongxin Zhang, Fenxiang Wu, Jiabing Hu, Xiaojun Yang, Jiayan Gui, Penghua Ji, Xingyan Liu, Cheng Wang, Yanqi Liu, Xiaoming Lu, Yi Xu, Yuxin Leng, Ruxin Li, and Zhizhan Xu

In this paper, we report the recent progress on the $1~\text{PW}/0.1~\text{Hz}$ laser beamline of Shanghai Superintense Ultrafast Laser Facility (SULF). The SULF-1 PW laser beamline is based on the double chirped pulse amplification (CPA) scheme, which can generate laser pulses of 50.8 J at 0.1 Hz after the final amplifier; the shot-to-shot energy fluctuation of the amplified pulse is as low as 1.2% (std). After compression, the pulse duration of 29.6 fs is achieved, which can support a maximal peak power of 1 PW. The contrast ratio at $-80~\text{ps}$ before main pulse is measured to be $2.5\times 10^{-11}$. The focused peak intensity is improved by optimizing the angular dispersion in the grating compressor. The maximal focused peak intensity can reach $2.7\times 10^{19}~\text{W}/\text{cm}^{2}$ even with an $f/26.5$ off-axis parabolic mirror. The horizontal and vertical angular pointing fluctuations in 1 h are measured to be 1.89 and $2.45~\unicode[STIX]{x03BC}\text{rad}$, respectively. The moderate repetition rate and the good stability are desirable characteristics for laser–matter interactions. The SULF-1 PW laser beamline is now in the phase of commissioning, and preliminary experiments of particle acceleration and secondary radiation under 300–400 TW/0.1 Hz laser condition have been implemented. The progress on the experiments and the daily stable operation of the laser demonstrate the availability of the SULF-1 PW beamline.

High Power Laser Science and Engineering
Feb. 19, 2020, Vol. 8 Issue 1 010000e4 (2020)
Generation and imaging of a tunable ultrafast intensity-rotating optical field with a cycle down to femtosecond region
Xuanke Zeng, Shuiqin Zheng, Yi Cai, Hongyu Wang, Xiaowei Lu, Honggeng Wang, Jingzhen Li, Weixin Xie, and Shixiang Xu

A tunable ultrafast intensity-rotating optical field is generated by overlapping a pair of 20 Hz, 800 nm chirped pulses with a Michelson interferometer (MI). Its rotating rate can be up to 10 trillion radians per second ($\text{Trad}/\text{s}$), which can be flexibly tuned with a mirror in the MI. Besides, its fold rotational symmetry structure is also changeable by controlling the difference from the topological charges of the pulse pair. Experimentally, we have successfully developed a two-petal lattice with a tunable rotating speed from $3.9~\text{Trad}/\text{s}$ up to $11.9~\text{Trad}/\text{s}$, which is confirmed by our single-shot ultrafast frame imager based on noncollinear optical-parametric amplification with its highest frame rate of 15 trillion frames per second (Tfps). This work is carried out at a low repetition rate. Therefore, it can be applied at relativistic, even ultrarelativistic, intensities, which usually operate in low repetition rate ultrashort and ultraintense laser systems. We believe that it may have application in laser-plasma-based accelerators, strong terahertz radiations and celestial phenomena.

High Power Laser Science and Engineering
Feb. 19, 2020, Vol. 8 Issue 1 010000e3 (2020)
Transport of ultraintense laser-driven relativistic electrons in dielectric targets
X. H. Yang, C. Ren, H. Xu, Y. Y. Ma, and F. Q. Shao

Ultraintense laser-driven relativistic electrons provide a way of heating matter to high energy density states related to many applications. However, the transport of relativistic electrons in solid targets has not been understood well yet, especially in dielectric targets. We present the first detailed two-dimensional particle-in-cell simulations of relativistic electron transport in a silicon target by including the field ionization and collisional ionization processes. An ionization wave is found propagating in the insulator, with a velocity dependent on laser intensity and slower than the relativistic electron velocity. Widely spread electric fields in front of the sheath fields are observed due to the collective effect of free electrons and ions. The electric fields are much weaker than the threshold electric field of field ionization. Two-stream instability behind the ionization front arises for the cases with laser intensity greater than $5\times 10^{19}~\text{W}/\text{cm}^{2}$ that produce high relativistic electron current densities.

High Power Laser Science and Engineering
Feb. 19, 2020, Vol. 8 Issue 1 010000e2 (2020)
High-efficiency 50 W burst-mode hundred picosecond green laser
Ning Ma, Meng Chen, Ce Yang, Shang Lu, Xie Zhang, and Xinbiao Du

We report high-energy, high-efficiency second harmonic generation in a near-infrared all-solid-state burst-mode picosecond laser at a repetition rate of 1 kHz with four pulses per burst using a type-I noncritical phase-matching lithium triborate crystal. The pulses in each burst have the same time delay (${\sim}1~\text{ns}$), the same pulse duration (${\sim}100~\text{ps}$) and different relative amplitudes that can be adjusted separately. A mode-locked beam from a semiconductor saturable absorber mirror is pulse-stretched, split into seed pulses and injected into a Nd:YAG regenerative amplifier. After the beam is reshaped by aspheric lenses, a two-stage master oscillator power amplifier and 4f imaging systems are applied to obtain a high power of ${\sim}100~\text{W}$. The 532 nm green laser has a maximum conversion efficiency of 68%, an average power of up to 50 W and a beam quality factor $M^{2}$ of 3.5.

High Power Laser Science and Engineering
Feb. 19, 2020, Vol. 8 Issue 1 010000e1 (2020)
Highly efficient continuous-wave mid-infrared generation based on intracavity difference frequency mixing
Cheng Xi, Peng Wang, Xiao Li, and Zejin Liu

We report on a new scheme for efficient continuous-wave (CW) mid-infrared generation using difference frequency generation (DFG) inside a periodically poled lithium niobate (PPLN)-based optical parametric oscillator (OPO). The pump sources were two CW fiber lasers fixed at 1018 nm and 1080 nm. One worked as the assisted laser to build parametric oscillation and generate an oscillating signal beam while the other worked at low power (${\leqslant}3~\text{W}$) to induce DFG between it and the signal beam. The PPLN temperature was appropriately adjusted to enable OPO and DFG to synchronously meet phase-matching conditions. Finally, both low-power 1018 nm and 1080 nm pump beams were successfully converted to $3.1~\unicode[STIX]{x03BC}\text{m}$ and $3.7~\unicode[STIX]{x03BC}\text{m}$ idler beams, respectively. The conversion efficiencies of the 1018 nm and 1080 nm pumped DFG reached 20% and 15%, respectively, while their slope efficiencies reached 19.6% and 15%. All these data were comparable to the OPOs pumped by themselves and never realized before in traditional CW DFG schemes. The results reveal that high-efficiency frequency down-conversion can be achieved with a low-power near-infrared pump source.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 4 04000e67 (2019)
Detection of laser-induced optical defects based on image segmentation
Xinkun Chu, Hao Zhang, Zhiyu Tian, Qing Zhang, Fang Wang, Jing Chen, and Yuanchao Geng

A number of vision-based methods for detecting laser-induced defects on optical components have been implemented to replace the time-consuming manual inspection. While deep-learning-based methods have achieved state-of-the-art performances in many visual recognition tasks, their success often hinges on the availability of a large number of labeled training sets. In this paper, we propose a surface defect detection method based on image segmentation with a U-shaped convolutional network (U-Net). The designed network was trained on paired sets of online and offline images of optics from a large laser facility. We show in our experimental evaluation that our approach can accurately locate laser-induced defects on the optics in real time. The main advantage of the proposed method is that the network can be trained end to end on small samples, without the requirement for manual labeling or manual feature extraction. The approach can be applied to the daily inspection and maintenance of optical components in large laser facilities.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 4 04000e66 (2019)
Generation of 100 nJ pulse, 1 W average power at from an intermode beating mode-locked all-fiber laser
Jiaji Zhang, Duanduan Wu, Ruwei Zhao, Rongping Wang, and Shixun Dai

We report on the investigation of intermode beating mode-locked (IBML) pulse generation in a simple all-fiber Tm$^{3+}$-doped double clad fiber laser (TDFL). This IBML TDFL is implemented by matching longitudinal-mode frequency between 793 nm laser and TDFL without extra mode locker. The central wavelength of ${\sim}1983~\text{nm}$, the fundamental pulse frequency of ${\sim}9.6~\text{MHz}$ and the signal-to-noise ratio (SNR) of ${>}50~\text{dB}$ are achieved in this IBML TDFL. With laser cavity optimization, the IBML TDFL can finally generate an average output power of 1.03 W with corresponding pulse energy of ${\sim}107~\text{nJ}$. These results can provide an easily accessible way to develop compact large-energy, high-power TDFLs.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 4 04000e65 (2019)
Sub-40-fs high-power Yb:CALYO laser pumped by single-mode fiber laser
Wenlong Tian, Geyang Wang, Dacheng Zhang, Jiangfeng Zhu, Zhaohua Wang, Xiaodong Xu, Jun Xu, and Zhiyi Wei

We report on the study of single-mode fiber-laser-pumped mode-locked Yb:CALYO lasers via using a passive saturable absorber and Kerr-lens mode-locking technique, respectively. Up to 3.1-W average power with 103-fs pulse duration is obtained from the passive mode-locking, and down to 36-fs pulse duration with more than 2-W average power is achieved by the pure Kerr-lens mode-locking, which is to the best of our knowledge, the highest average power from a reported sub-40-fs Yb-based solid-state oscillator.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 4 04000e64 (2019)
The path to electrical energy using laser fusion
Stephen E. Bodner

Direct-drive laser fusion has one potential advantage over all other approaches to fusion energy. The hot plasma can be kept near or below the various plasma instability thresholds, if one uses purely spherical targets, with a short wavelength, large bandwidth and optically smoothed excimer laser. Instead of trying to manage laser–plasma instabilities, one avoids them. There is a path to complete the evaluation and development of this energy option, with moderate costs and a moderate time scale. Glass lasers, with their longer wavelength and narrower bandwidth, are no longer useful to evaluate fusion targets.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 4 04000e63 (2019)
Implementation of a phase plate for the generation of homogeneous focal-spot intensity distributions at the high-energy short-pulse laser facility PHELIX
V. Bagnoud, J. Hornung, M. Afshari, U. Eisenbarth, C. Brabetz, Z. Major, and B. Zielbauer

We propose and demonstrate the use of random phase plates (RPPs) for high-energy sub-picosecond lasers. Contrarily to previous work related to nanosecond lasers, an RPP poses technical challenges with ultrashort-pulse lasers. Here, we implement the RPP near the beginning of the amplifier and image-relay it throughout the laser amplifier. With this, we obtain a uniform intensity distribution in the focus over an area 1600 times the diffraction limit. This method shows no significant drawbacks for the laser and it has been implemented at the PHELIX laser facility where it is now available for users.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 4 04000e62 (2019)
Toward 5.2 μm terawatt few-cycle pulses via optical parametric chirped-pulse amplification with oxide La3Ga5.5Nb0.5O14 crystals
Jinsheng Liu, Jingui Ma, Jing Wang, Peng Yuan, Guoqiang Xie, and Liejia Qian

High-power femtosecond lasers beyond $5~\unicode[STIX]{x03BC}\text{m}$ are attractive for strong-field physics with mid-infrared (IR) fields but are difficult to scale up. In optical parametric chirped-pulse amplification (OPCPA) at mid-IR wavelengths, a nonlinear crystal is vital, and its transmittance, dispersion, nonlinear coefficient and size determine the achievable power and wavelength. OPCPA beyond $5~\unicode[STIX]{x03BC}\text{m}$ routinely relies on semiconductor crystals because common oxide crystals are not transparent in this spectral range. However, the small size and low damage threshold of semiconductor crystals fundamentally limit the peak power to gigawatts. In this paper, we design a terawatt-class OPCPA system at $5.2~\unicode[STIX]{x03BC}\text{m}$ based on a new kind of oxide crystal of $\text{La}_{3}\text{Ga}_{5.5}\text{Nb}_{0.5}\text{O}_{14}$ (LGN). The extended transparent range, high damage threshold, superior phase-matching characteristics and large size of LGN enable the generation of 0.13 TW seven-cycle pulses at $5.2~\unicode[STIX]{x03BC}\text{m}$. This design fully relies on the state-of-the-art OPCPA technology of an octave-spanning ultrafast Ti:sapphire laser and a thin-disk Yb:YAG laser, offering the performance characteristics of high power, a high repetition rate and a stable carrier&ndash;envelope phase.

High Power Laser Science and Engineering
Editors' PickJan. 01, 1900, Vol. 7 Issue 4 04000e61 (2019)
A 2D scintillator-based proton detector for high repetition rate experiments
M. Huault, D. De Luis, J. I. Apiñaniz, M. De Marco, C. Salgado, N. Gordillo, C. Gutiérrez Neira, J. A. Pérez-Hernández, R. Fedosejevs, G. Gatti, L. Roso, and L. Volpe

We present a scintillator-based detector able to measure the proton energy and the spatial distribution with a relatively simple design. It has been designed and built at the Spanish Center for Pulsed Lasers (CLPU) in Salamanca and tested in the proton accelerator at the Centro de Micro-Análisis de Materiales (CMAM) in Madrid. The detector is capable of being set in the high repetition rate (HRR) mode and reproduces the performance of the radiochromic film detector. It represents a new class of online detectors for laser–plasma physics experiments in the newly emerging high power laser laboratories working at HRR.

High Power Laser Science and Engineering
Editors' PickJan. 01, 1900, Vol. 7 Issue 4 04000e60 (2019)
Deep-learning-based phase control method for tiled aperture coherent beam combining systems
Tianyue Hou, Yi An, Qi Chang, Pengfei Ma, Jun Li, Dong Zhi, Liangjin Huang, Rongtao Su, Jian Wu, Yanxing Ma, and Pu Zhou

We incorporate deep learning (DL) into tiled aperture coherent beam combining (CBC) systems for the first time, to the best of our knowledge. By using a well-trained convolutional neural network DL model, which has been constructed at a non-focal-plane to avoid the data collision problem, the relative phase of each beamlet could be accurately estimated, and then the phase error in the CBC system could be compensated directly by a servo phase control system. The feasibility and extensibility of the phase control method have been demonstrated by simulating the coherent combining of different hexagonal arrays. This DL-based phase control method offers a new way of eliminating dynamic phase noise in tiled aperture CBC systems, and it could provide a valuable reference on alleviating the long-standing problem that the phase control bandwidth decreases as the number of array elements increases.

High Power Laser Science and Engineering
On the CoverJan. 01, 1900, Vol. 7 Issue 4 04000e59 (2019)
Burst behavior due to the quasimode excited by stimulated Brillouin scattering in high-intensity laser–plasma interactions
Q. S. Feng, L. H. Cao, Z. J. Liu, C. Y. Zheng, and X. T. He

The strong-coupling mode, called the “quasimode”, is excited by stimulated Brillouin scattering (SBS) in high-intensity laser–plasma interactions. Also SBS of the quasimode competes with SBS of the fast mode (or slow mode) in multi-ion species plasmas, thus leading to a low-frequency burst behavior of SBS reflectivity. Competition between the quasimode and the ion-acoustic wave (IAW) is an important saturation mechanism of SBS in high-intensity laser–plasma interactions. These results give a clear explanation of the low-frequency periodic burst behavior of SBS and should be considered as a saturation mechanism of SBS in high-intensity laser–plasma interactions.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 4 04000e58 (2019)
Monoenergetic proton beam accelerated by single reflection mechanism only during hole-boring stage – ERRATUM
Wenpeng Wang, Cheng Jiang, Shasha Li, Hao Dong, Baifei Shen, Yuxin Leng, Ruxin Li, and Zhizhan Xu

The original article contained a spelling error in the first author’s name. The correct name is shown here.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 4 04000e57 (2019)
Review on TNSA diagnostics and recent developments at SPARC_LAB
Fabrizio Bisesto, Mario Galletti, Maria Pia Anania, Massimo Ferrario, Riccardo Pompili, Mordechai Botton, Elad Schleifer, and Arie Zigler

Interaction between high-intensity lasers with solid targets is the key process in a wide range of novel laser-based particle accelerator schemes, as well as electromagnetic radiation sources. Common to all the processes is the generation of femtosecond pulses of relativistic electrons emitted from the targets as forerunners of the later-time principal products of the interaction scheme. In this paper, some diagnostics employed in laser–solid matter interaction experiments related to electrons, protons, ions, electromagnetic pulses (EMPs) and X-rays are reviewed. Then, we present our experimental study regarding fast electrons and EMPs utilizing a femtosecond-resolution detector previously adopted only in accelerator facilities.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e56 (2019)
Monoenergetic proton beam accelerated by single reflection mechanism only during hole-boring stage
Wenpeng Wang, Cheng Jiang, Shasha Li, Hao Dong, Baifei Shen, Yuxin Leng, Ruxin Li, and Zhizhan Xu

Multidimensional instabilities always develop with time during the process of radiation pressure acceleration, and are detrimental to the generation of monoenergetic proton beams. In this paper, a sharp-front laser is proposed to irradiate a triple-layer target (the proton layer is set between two carbon ion layers) and studied in theory and simulations. It is found that the thin proton layer can be accelerated once to hundreds of MeV with monoenergetic spectra only during the hole-boring (HB) stage. The carbon ions move behind the proton layer in the light-sail (LS) stage, which can shield any further interaction between the rear part of the laser and the proton layer. In this way, proton beam instabilities can be reduced to a certain extent during the entire acceleration process. It is hoped such a mechanism can provide a feasible way to improve the beam quality for proton therapy and other applications.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e55 (2019)
Single-shot electrons and protons time-resolved detection from high-intensity laser–solid matter interactions at SPARC_LAB
F. Bisesto, M. Galletti, M. P. Anania, M. Ferrario, R. Pompili, M. Botton, A. Zigler, F. Consoli, M. Salvadori, P. Andreoli, and C. Verona

Laser–plasma interactions have been studied in detail over the past twenty years, as they show great potential for the next generation of particle accelerators. The interaction between an ultra-intense laser and a solid-state target produces a huge amount of particles: electrons and photons (X-rays and $\unicode[STIX]{x03B3}$-rays) at early stages of the process, with protons and ions following them. At SPARC_LAB Test Facility we have set up two diagnostic lines to perform simultaneous temporally resolved measurements on both electrons and protons.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e53 (2019)
Passive optimization of pump noise transfer function by narrow band-pass filtering in femtosecond fiber lasers
Peng Qin, Sijia Wang, Minglie Hu, and Youjian Song

Fluctuation of pump power is one of the major sources of temporal and intensity noise in femtosecond fiber lasers. In this work, the transfer functions between the relative intensity noise (RIN) of the pump laser diode (LD) and the output RIN, between the RIN of the pump LD and timing jitter of femtosecond fiber lasers are systematically studied. It is demonstrated, for the first time to our knowledge, that the amplitude of the pump RIN transfer function can be effectively decreased by an intra-cavity narrow band-pass filter. In particular, for normal-dispersion lasers, the 3-dB bandwidth of the transfer function can also be narrowed by two-thirds, with a steeper falling edge. Furthermore, with the narrow band-pass filtering, the transfer function is almost independent of the net intra-cavity dispersion due to amplifier similariton formation. The proposed scheme can effectively isolate the pump-induced noise without the need of complex active pump LD control and intra-cavity dispersion management, thus providing an easy way for practical high-power, high-stability femtosecond fiber laser design and related high-precision applications outside the laboratory.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e52 (2019)
Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
G. Cristoforetti, L. Antonelli, D. Mancelli, S. Atzeni, F. Baffigi, F. Barbato, D. Batani, G. Boutoux, F. D’Amato, J. Dostal, R. Dudzak, E. Filippov, Y. J. Gu, L. Juha, O. Klimo, M. Krus, S. Malko, A. S. Martynenko, Ph. Nicolai, V. Ospina, S. Pikuz, O. Renner, J. Santos, V. T. Tikhonchuk, J. Trela, S. Viciani, L. Volpe, S. Weber, and L. A. Gizzi

Laser–plasma interaction (LPI) at intensities $10^{15}{-}10^{16}~\text{W}\cdot \text{cm}^{-2}$ is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS) facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities, driven by the interaction of an infrared laser pulse at an intensity ${\sim}1.2\times 10^{16}~\text{W}\cdot \text{cm}^{-2}$ with a ${\sim}100~\unicode[STIX]{x03BC}\text{m}$ scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high value of plasma temperature (${\sim}4~\text{keV}$) expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed. Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results, beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e51 (2019)
High-repetition-rate ( kHz) targets and optics from liquid microjets for high-intensity laser–plasma interactions
K. M. George, J. T. Morrison, S. Feister, G. K. Ngirmang, J. R. Smith, A. J. Klim, J. Snyder, D. Austin, W. Erbsen, K. D. Frische, J. Nees, C. Orban, E. A. Chowdhury, and W. M. Roquemore

High-intensity laser–plasma interactions produce a wide array of energetic particles and beams with promising applications. Unfortunately, the high repetition rate and high average power requirements for many applications are not satisfied by the lasers, optics, targets, and diagnostics currently employed. Here, we aim to address the need for high-repetition-rate targets and optics through the use of liquids. A novel nozzle assembly is used to generate high-velocity, laminar-flowing liquid microjets which are compatible with a low-vacuum environment, generate little to no debris, and exhibit precise positional and dimensional tolerances. Jets, droplets, submicron-thick sheets, and other exotic configurations are characterized with pump–probe shadowgraphy to evaluate their use as targets. To demonstrate a high-repetition-rate, consumable, liquid optical element, we present a plasma mirror created by a submicron-thick liquid sheet. This plasma mirror provides etalon-like anti-reflection properties in the low field of 0.1% and high reflectivity as a plasma, 69%, at a repetition rate of 1 kHz. Practical considerations of fluid compatibility, in-vacuum operation, and estimates of maximum repetition rate are addressed. The targets and optics presented here demonstrate a potential technique for enabling the operation of laser–plasma interactions at high repetition rates.

High Power Laser Science and Engineering
Editors' PickJan. 01, 1900, Vol. 7 Issue 3 03000e50 (2019)
Calibration and verification of streaked optical pyrometer system used for laser-induced shock experiments
Zhiyu He, Guo Jia, Fan Zhang, Xiuguang Huang, Zhiheng Fang, Jiaqing Dong, Hua Shu, Junjian Ye, Zhiyong Xie, Yuchun Tu, Qili Zhang, Erfu Guo, Wenbing Pei, and Sizu Fu

Although the streaked optical pyrometer (SOP) system has been widely adopted in shock temperature measurements, its reliability has always been of concern. Here, two calibrated Planckian radiators with different color temperatures were used to calibrate and verify the SOP system by comparing the two calibration standards using both multi-channel and single-channel methods. A high-color-temperature standard lamp and a multi-channel filter were specifically designed for the measurement system. To verify the reliability of the SOP system, the relative deviation between the measured data and the standard value of less than 5% was calibrated out, which demonstrates the reliability of the SOP system. Furthermore, a method to analyze the uncertainty and sensitivity of the SOP system is proposed. A series of laser-induced shock experiments were conducted at the ‘Shenguang-II’ laser facility to verify the reliability of the SOP system for temperature measurements at tens of thousands of kelvin. The measured temperature of the quartz in our experiments agreed fairly well with previous works, which serves as evidence for the reliability of the SOP system.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e49 (2019)
An online diagnosis technique for simultaneous measurement of the fundamental, second and third harmonics in one snapshot
Xue Dong, Xingchen Pan, Cheng Liu, and Jianqiang Zhu

A three-wavelength coherent-modulation-imaging (CMI) technique is proposed to simultaneously measure the fundamental, second and third harmonics of a laser driver in one snapshot. Laser beams at three wavelengths (1053 nm, 526.5 nm and 351 nm) were simultaneously incident on a random phase plate to generate hybrid diffraction patterns, and a modified CMI algorithm was adopted to reconstruct the complex amplitude of each wavelength from one diffraction intensity frame. The validity of this proposed technique was verified using both numerical simulation and experimental analyses. Compared to commonly used measurement methods, this proposed method has several advantages, including a compact structure, convenient operation and high accuracy.

High Power Laser Science and Engineering
Editors' PickJan. 01, 1900, Vol. 7 Issue 3 03000e48 (2019)
Environmentally stable Er-fiber mode-locked pulse generation and amplification by spectrally filtered and phase-biased nonlinear amplifying long-loop mirror
Zhengru Guo, Qiang Hao, Junsong Peng, and Heping Zeng

We report on environmentally stable long-cavity ultrashort erbium-doped fiber lasers, which self-start mode-locking at quite low thresholds by using spectrally filtered and phase-biased nonlinear amplifying long-loop mirrors. By employing 100-m polarization-maintaining fiber (PMF) in the nonlinear loop, the fundamental repetition rate reaches 1.84 MHz and no practical limitation is found to further decrease the repetition rate. The filter used in the long loop not only suppresses Kelly sidebands of the solitons, but also eliminates the amplified spontaneous emission which exists widely in low-repetition-rate ultrafast fiber lasers. The bandwidth of the filter is optimized by using a numerical model. The laser emits approximately 3-ps pulses with an energy of 17.4 pJ, which is further boosted to $1.5~\unicode[STIX]{x03BC}\text{J}$ by using a fiber amplifier.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e47 (2019)
Rapid growth and properties of large-aperture 98%-deuterated DKDP crystals
Xumin Cai, Xiuqing Lin, Guohui Li, Junye Lu, Ziyu Hu, and Guozong Zheng

In this paper, a highly deuterated potassium dihydrogen phosphate (DKDP) crystal with sizes up to $318~\text{mm}\times 312~\text{mm}\times 265~\text{mm}$ was grown by the rapid-growth method. The synthesis tank device was specially designed to synthesize a higher deuterium concentration and high-purity DKDP solution. The deuterium content of the as-grown crystal, which was 97.9%, was determined by two methods, including infrared (IR) spectroscopy and thermo-gravimetric analysis (TGA) measurements. The performances of the 97.9% DKDP crystal, including transmission, absorption coefficient, and laser-induced damage threshold (LIDT) were measured. The results indicate that, in the near-infrared band, the transmission of the 97.9% DKDP crystal is higher than that of KDP and 70% DKDP crystals, and the absorption coefficient is lower. The LIDT of the crystal reached $23.2~\text{J}\cdot \text{cm}^{-2}$ (R-on-1, 1064 nm, 3 ns), which meets the engineering requirements for use in optical applications.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e46 (2019)
Effect of rear surface fields on hot, refluxing and escaping electron populations via numerical simulations
D. R. Rusby, C. D. Armstrong, G. G. Scott, M. King, P. McKenna, and D. Neely

After a population of laser-driven hot electrons traverses a limited thickness solid target, these electrons will encounter the rear surface, creating TV/m fields that heavily influence the subsequent hot-electron propagation. Electrons that fail to overcome the electrostatic potential reflux back into the target. Those electrons that do overcome the field will escape the target. Here, using the particle-in-cell (PIC) code EPOCH and particle tracking of a large population of macro-particles, we investigate the refluxing and escaping electron populations, as well as the magnitude, spatial and temporal evolution of the rear surface electrostatic fields. The temperature of both the escaping and refluxing electrons is reduced by 30%–50% when compared to the initial hot-electron temperature as a function of intensity between $10^{19}$ and $10^{21}~~\text{W}/\text{cm}^{2}$. Using particle tracking we conclude that the highest energy internal hot electrons are guaranteed to escape up to a threshold energy, below which only a small fraction are able to escape the target. We also examine the temporal characteristic of energy changes of the refluxing and escaping electrons and show that the majority of the energy change is as a result of the temporally evolving electric field that forms on the rear surface.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e45 (2019)
Simulation and analysis of the time evolution of laser power and temperature in static pulsed XPALs
Chenyi Su, Binglin Shen, Xingqi Xu, Chunsheng Xia, and Bailiang Pan

A theoretical model is established to describe the thermal dynamics and laser kinetics in a static pulsed exciplex pumped Cs–Ar laser (XPAL). The temporal behaviors of both the laser output power and temperature rise in XPALs with a long-time pulse and multi-pulse operation modes are calculated and analyzed. In the case of long-time pulse pumping, the results show that the initial laser power increases with a rise in the initial operating temperature, but the laser power decreases quickly due to heat accumulation. In the case of multi-pulse operation, simulation results show that the optimal laser output power can be obtained by appropriately increasing the initial temperature and reducing the thermal relaxation time.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e44 (2019)
Selective generation of individual Raman Stokes lines using dissipative soliton resonance pulses
He Xu, Sheng-Ping Chen, and Zong-Fu Jiang

Pumped by rectangular-shaped dissipative soliton resonance (DSR) pulses at 1030 nm, selective excitations of Raman Stokes lines of up to third order with extinction ratios of 8 dB and fifth order with extinction ratios of 4 dB are demonstrated experimentally. The rectangular DSR pulses are generated from a dual-amplifier ytterbium-doped figure-of-eight mode-locked laser constructed using all $10~\unicode[STIX]{x03BC}\text{m}$-core-diameter large-mode-area fibers. By varying the two pump powers, the peak power of the output DSR pulses can be continuously tuned from 10 W to 100 W and from 30 W to 200 W, respectively, for two different lengths of the nonlinear amplifying loop mirror inside the cavity. High-frequency components are found to correspond to parts of the pulse in the trailing edge when two bandpass filters are used to separate the propagated pulse. Consequently, it provides an all-fiber technique to achieve selective excitation of the Raman shift by adjusting the peak power of the DSR pulse.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e43 (2019)
Modeling of the 3D spatio-temporal thermal profile of joule-class -based laser amplifiers
Issa Tamer, Sebastian Keppler, Jörg Körner, Marco Hornung, Marco Hellwing, Frank Schorcht, Joachim Hein, and Malte C. Kaluza

Thermal profile modification of an active material in a laser amplifier via optical pumping results in a change in the material’s refractive index, and causes thermal expansion and stress, eventually leading to spatial phase aberrations, or even permanent material damage. For this purpose, knowledge of the 3D spatio-temporal thermal profile, which can currently only be retrieved via numerical simulations, is critical for joule-class laser amplifiers to reveal potentially dangerous thermal features within the pumped active materials. In this investigation, a detailed, spatio-temporal numerical simulation was constructed and tested for accuracy against surface thermal measurements of various end-pumped $\text{Yb}^{3+}$-doped laser-active materials. The measurements and simulations show an excellent agreement and the model was successfully applied to a joule-class $\text{Yb}^{3+}$-based amplifier currently operating in the POLARIS laser system at the Friedrich-Schiller-University and Helmholtz-Institute Jena in Germany.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e42 (2019)
Amplification of 200-ps high-intensity laser pulses via frequency matching stimulated Brillouin scattering
Hang Yuan, Yulei Wang, Qiang Yuan, Dongxia Hu, Can Cui, Zhaohong Liu, Sensen Li, Yi Chen, Feng Jing, and Zhiwei Lü

Laser pulses of 200 ps with extremely high intensities and high energies are sufficient to satisfy the demand of shock ignition, which is an alternative path to ignition in inertial confinement fusion (ICF). This paper reports a type of Brillouin scheme to obtain high-intensity 200-ps laser pulses, where the pulse durations are a challenge for conventional pulsed laser amplification systems. In the amplification process, excited Brillouin acoustic waves fulfill the nonlinear optical effect through which the high energy of a long pump pulse is entirely transferred to a 200-ps laser pulse. This method was introduced and achieved within the SG-III prototype system in China. Compared favorably with the intensity of $2~\text{GW}/\text{cm}^{2}$ in existing ICF laser drivers, a 6.96-$\text{GW}/\text{cm}^{2}$ pulse with a width of 170 ps was obtained in our experiment. The practical scalability of the results to larger ICF laser drivers is discussed.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e41 (2019)
A demonstration of extracting the strength and wavelength of the magnetic field generated by the Weibel instability from proton radiography
Bao Du, Hong-Bo Cai, Wen-Shuai Zhang, Shi-Yang Zou, Jing Chen, and Shao-Ping Zhu

The Weibel instability and the induced magnetic field are of great importance for both astrophysics and inertial confinement fusion. Because of the stochasticity of this magnetic field, its main wavelength and mean strength, which are key characteristics of the Weibel instability, are still unobtainable experimentally. In this paper, a theoretical model based on the autocorrelation tensor shows that in proton radiography of the Weibel-instability-induced magnetic field, the proton flux density on the detection plane can be related to the energy spectrum of the magnetic field. It allows us to extract the main wavelength and mean strength of the two-dimensionally isotropic and stochastic magnetic field directly from proton radiography for the first time. Numerical calculations are conducted to verify our theory and show good consistency between pre-set values and the results extracted from proton radiography.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e40 (2019)
Advanced fuel layering in line-moving, high-gain direct-drive cryogenic targets
I. V. Aleksandrova, and E. R. Koresheva

In inertial fusion energy (IFE) research, a number of technological issues have focused on the ability to inexpensively fabricate large quantities of free-standing targets (FSTs) by developing a specialized layering module with repeatable operation. Of central importance for the progress towards plasma generation with intense thermonuclear reactions is the fuel structure, which must be isotropic to ensure that fusion will take place. In this report, the results of modeling the FST layering time, $\unicode[STIX]{x1D70F}_{\text{Form}}$, are presented for targets which are shells of ${\sim}4~\text{mm}$ in diameter with a wall made from compact and porous polymers. The layer thickness is ${\sim}200~\unicode[STIX]{x03BC}\text{m}$ for pure solid fuel and ${\sim}250~\unicode[STIX]{x03BC}\text{m}$ for in-porous solid fuel. Computation shows $\unicode[STIX]{x1D70F}_{\text{Form}} s for $\text{D}_{2}$ fuel and $\unicode[STIX]{x1D70F}_{\text{Form}} s for D–T fuel. This is an excellent result in terms of minimizing the tritium inventory, producing IFE targets in massive numbers (${\sim}$1 million each day) and obtaining the fuel as isotropic ultrafine layers. It is shown experimentally that such small layering time can be realized by the FST layering method in line-moving, high-gain direct-drive cryogenic targets using $n$-fold-spiral layering channels at $n=2,3$.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e38 (2019)
ARCTURUS laser: a versatile high-contrast, high-power multi-beam laser system
M. Cerchez, R. Prasad, B. Aurand, A. L. Giesecke, S. Spickermann, S. Brauckmann, E. Aktan, M. Swantusch, M. Toncian, T. Toncian, and O. Willi

With the latest configuration, the Ti:Sa laser system ARCTURUS (Düsseldorf University, Germany) operates with a double-chirped pulse amplification (CPA) architecture delivering pulses with an energy of 7 J before compression in each of the two high-power beams. By the implementation of a plasma mirror system, the intrinsic laser contrast is enhanced up to $10^{-12}$ on a time scale of hundreds of picoseconds, before the main peak. The laser system has been used in various configurations for advanced experiments and different studies have been carried out employing the high-power laser beams as a single, high-intensity interaction beam ($I\approx 10^{20}~\text{W}/\text{cm}^{2}$), in dual- and multi-beam configurations or in a pump–probe arrangement.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 3 03000e37 (2019)
Enhancement of the surface emission at the fundamental frequency and the transmitted high-order harmonics by pre-structured targets
K. Q. Pan, D. Yang, L. Guo, Z. C. Li, S. W. Li, C. Y. Zheng, S. E. Jiang, B. H. Zhang, and X. T. He

Laser interaction with an ultra-thin pre-structured target is investigated with the help of both two-dimensional and three-dimensional particle-in-cell simulations. With the existence of a periodic structure on the target surface, the laser seems to penetrate through the target at its fundamental frequency even if the plasma density of the target is much higher than the laser’s relativistically critical density. The particle-in-cell simulations show that the transmitted laser energy behind the pre-structured target is increased by about two orders of magnitude compared to that behind the flat target. Theoretical analyses show that the transmitted energy behind the pre-structured target is actually re-emitted by electron ‘islands’ formed by the surface plasma waves on the target surfaces. In other words, the radiation with the fundamental frequency is actually ‘surface emission’ on the target rear surface. Besides the intensity of the component with the fundamental frequency, the intensity of the high-order harmonics behind the pre-structured target is also much enhanced compared to that behind the flat target. The enhancement of the high-order harmonics is also related to the surface plasma waves generated on the target surfaces.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 2 02000e36 (2019)
High-repetition-rate and high-power picosecond regenerative amplifier based on a single bulk Nd:GdVO4 crystal
Jie Guo, Wei Wang, Hua Lin, and Xiaoyan Liang

We report on a high-repetition-rate, high-power continuously pumped Nd:GdVO4 regenerative amplifier. Numerical simulations successfully pinpoint the optimum working point free of bifurcation instability with simultaneous efficient energy extraction. At a repetition rate of 100 kHz, a maximum output power of 23 W was obtained with a pulse duration of 27 ps, corresponding to a pulse energy of $230~\unicode[STIX]{x03BC}\text{J}$. The system displayed an outstanding stability with a root mean square power noise as low as 0.3%. The geometry of the optical resonator and the pumping scheme enhanced output power in the $\text{TEM}_{00}$ mode with a single bulk crystal. Accordingly, nearly diffraction-limited beam quality was produced with $M^{2}\approx 1.2$ at full pump power.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 2 02000e35 (2019)
FM-to-AM conversion in angular filtering based on transmitted volume Bragg gratings
Fan Gao, Baoxing Xiong, Xiang Zhang, and Xiao Yuan

FM-to-AM conversion for angular filtering based on transmitted volume Bragg gratings (TBGs) is discussed. Simulation results show that a narrower spectral selectivity of TBGs led to stronger FM-to-AM conversion. Good angular selectivity and a wide bandwidth for the TBGs can be obtained by controlling the grating period and thickness. FM-to-AM conversion can be effectively suppressed and the distortion criterion for the filtered beam reduces to less than 5%. FM-to-AM conversion of TBGs is demonstrated in the ‘Shenguang’ facility, and the results are in good agreement with the simulation.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 7 Issue 2 02000e34 (2019)
Comprehensive investigation on producing high-power orbital angular momentum beams by coherent combining technology
Dong Zhi, Tianyue Hou, Pengfei Ma, Yanxing Ma, Pu Zhou, Rumao Tao, Xiaolin Wang, and Lei Si

High-power orbital angular momentum (OAM) beams have distinct advantages in improving capacity and data receiving for free-space optical communication systems at long distances. Utilizing the coherent combination of a beam array technique and helical phase approximation by a piston phase array, we have proposed a generating system for a novel high-power beam carrying OAM, which could overcome the power limitations of a common vortex phase modulator and a single beam. The characteristics of this generating method and the orthogonality of the generated OAM beams with different eigenstates have been theoretically analyzed and verified. Also a high-power OAM beam produced by coherent beam combination (CBC) of a six-element hexagonal fiber amplifier array has been experimentally implemented. Results show that the CBC technique utilized to control the piston phase differences among the array beams has a high efficiency of 96.3%. On the premise of CBC, we have obtained novel vortex beams carrying OAM of $\pm 1$ by applying an additional piston phase array modulation on the corresponding beam array. The experimental results agree approximately with the theoretical analysis. This work could be beneficial to areas that need high-power OAM beams, such as ultra-long distance free-space optical communications, biomedical treatments, and powerful trapping and manipulation under deep potential wells.

High Power Laser Science and Engineering
May. 30, 2019, Vol. 7 Issue 2 02000e33 (2019)
Fabrication of kW-level chirped and tilted fiber Bragg gratings and filtering of stimulated Raman scattering in high-power CW oscillators
Kerong Jiao, Jian Shu, Hua Shen, Zhiwen Guan, Feiyan Yang, and Rihong Zhu

Suppression of stimulated Raman scattering (SRS) by means of chirped and tilted fiber Bragg gratings (CTFBGs) has become a key topic. However, research on high-power systems is still lacking due to two problems. Firstly, after the inscription, there are a large number of hydroxyl compounds and hydrogen molecules in CTFBGs that cause significant heating due to their strong infrared absorption. Secondly, CTFBGs can couple Stokes light from the core to the cladding and the coating, which causes serious heating in the coating of the CTFBG. Aimed at overcoming these bottlenecks, a process that combines constant-low-temperature and variable-high-temperature annealing is used to reduce the thermal slope of the CTFBG. Also, a segmented-corrosion cladding power stripping technology is used on the CTFBG to remove the Stokes light which is coupled to the cladding, which solves the problem of overheating in the coating of the CTFBG. Thereby, a CTFBG with both a kilowatt-level power-carrying load and the ability to suppress SRS in a fiber laser has been developed. Further, we establish a kW-level CW oscillator to test the CTFBG. Experimental results demonstrate that the power-carrying load of the CTFBG is close to 1 kW, the thermal slope is lower than $0.015\,^{\circ }\text{C}/\text{W}$, and the SRS suppression ratio is nearly 23 dB.

High Power Laser Science and Engineering
May. 14, 2019, Vol. 7 Issue 2 02000e31 (2019)
High-extraction-efficiency, nanosecond bidirectional ring amplifier with twin pulses
Tiancheng Yu, Jiangtao Guo, Gang Xia, Xiang Zhang, Fan Gao, Jiangfeng Wang, Wei Fan, and Xiao Yuan

The output performances of a bidirectional ring amplifier with twin pulses are demonstrated. Compared to the extraction efficiency of 32% for single-pulse injection, the extraction efficiency of stored energy for twin-pulse injection with bidirectional propagation is increased to 60%. The maximum output energies of the twin pulses are 347 mJ and 351 mJ, and the output energy of a single pulse is only 373 mJ under the same amplifier operating conditions. The experimental results show that the bidirectional ring amplifier with twin pulses can achieve a higher extraction efficiency of stored energy at a lower operating fluence, and has potential applications in high-power and high-energy laser facilities.

High Power Laser Science and Engineering
May. 02, 2019, Vol. 7 Issue 2 02000e30 (2019)
Band-stop angular filtering with hump volume Bragg gratings
Fan Gao, Xin Wang, Tiancheng Yu, Xiang Zhang, and Xiao Yuan

A band-stop angular filter (BSF) based on hump volume Bragg gratings (HVBGs) is proposed. Band-stop filtering in a two-stage amplifier laser system is discussed and simulated. Simulation results show that small-scale self-focusing effects in the laser system can be effectively suppressed with the BSF due to the control of fast nonlinear growth in a specific range of spatial frequencies in the laser beam. Near-field modulation of the output beam from the laser system was decreased from 2.69 to 1.37 by controlling the fast nonlinear growth of spatial frequencies ranging from $0.6~\text{mm}^{-1}$ to $1.2~\text{mm}^{-1}$ with the BSF. In addition, the BSF can be used in a plug-and-play scheme and has potential applications in high-power laser systems.

High Power Laser Science and Engineering
Apr. 30, 2019, Vol. 7 Issue 2 02000e29 (2019)
All-fiber high-power linearly polarized supercontinuum generation from polarization-maintaining photonic crystal fibers
Yue Tao, and Sheng-Ping Chen

We demonstrate an all-fiber high-power linearly polarized supercontinuum source with polarization-maintaining photonic crystal fibers (PM-PCFs) as the nonlinear medium. The source exhibits an average output power of 3.8 W with a flat spectrum from 480 nm to 2100 nm at the $-$10 dB level, except for the residual pump peak. The polarization extinction ratio (PER) is measured to be greater than 20 dB at selected sample wavelength points (532 nm, 1064 nm and 1550 nm) at the highest pump power level and greater than 20 dB at all wavelengths from 800 nm to 1500 nm at the low pump power level. We also experimentally study the spectral properties when the pump light propagates along different axes of the PM-PCF. The results show that propagating parallel to the slow axis enables a broader spectrum in the PM-PCF in this case, probably due to matching of the dispersion properties with the pump light, which is qualitatively in accordance with the numerical simulation. To our best knowledge, this is the first demonstration of a watt-level linearly polarized supercontinuum source generated from PM-PCFs in an all-fiber structure.

High Power Laser Science and Engineering
Apr. 26, 2019, Vol. 7 Issue 2 02000e28 (2019)
High-peak-power temporally shaped nanosecond fiber laser immune to SPM-induced spectral broadening
Rongtao Su, Pengfei Ma, Pu Zhou, Zilun Chen, Xiaolin Wang, Yanxing Ma, Jian Wu, and Xiaojun Xu

High-peak-power transform-limited narrow-linewidth nanosecond all-fiber lasers are desired in a range of applications. However, their linewidths will be broadened by self-phase modulation (SPM). We propose a novel concept that generates transform-limited laser pulses by temporally shaping the pulse seed. The impact of the pulse shape on SPM-induced spectral broadening was studied numerically and experimentally. It was found theoretically that the square-shape pulsed laser is immune to SPM-induced spectral broadening. Based on this principle, we built a high-peak-power, linearly polarized, square-shape nanosecond all-fiber laser in a master oscillator power amplifier (MOPA) configuration. Stimulated Brillouin scattering (SBS) limited peak powers of 4.02 kW, 5.06 kW, 6.52 kW and 9.30 kW were obtained at pulse widths of 8 ns, 7 ns, 6 ns and 5 ns. Thanks to the square-shape pulsed seed, the linewidths at maximum peak power remained at 129.5 MHz, 137.6 MHz, 156.2 MHz and 200.1 MHz, respectively, close to the transform-limited values of 110.8 MHz, 126.6 MHz, 147.7 MHz and 177.3 MHz.

High Power Laser Science and Engineering
Apr. 26, 2019, Vol. 7 Issue 2 02000e27 (2019)
Generation of high energy laser-driven electron and proton sources with the 200 TW system VEGA 2 at the Centro de Laseres Pulsados
L. Volpe, R. Fedosejevs, G. Gatti, J. A. Pérez-Hernández, C. Méndez, J. Apiñaniz, X. Vaisseau, C. Salgado, M. Huault, S. Malko, G. Zeraouli, V. Ospina, A. Longman, D. De Luis, K. Li, O. Varela, E. García, I. Hernández, J. D. Pisonero, J. García Ajates, J. M. Alvarez, C. García, M. Rico, D. Arana, J. Hernández-Toro, and L. Roso

The Centro de Laseres Pulsados in Salamanca, Spain has recently started operation phase and the first user access period on the 6 J 30 fs 200 TW system (VEGA 2) already started at the beginning of 2018. In this paper we report on two commissioning experiments recently performed on the VEGA 2 system in preparation for the user campaign. VEGA 2 system has been tested in different configurations depending on the focusing optics and targets used. One configuration (long focal length $F=130$ cm) is for underdense laser–matter interaction where VEGA 2 is focused onto a low density gas-jet generating electron beams (via laser wake field acceleration mechanism) with maximum energy up to 500 MeV and an X-ray betatron source with a 10 keV critical energy. A second configuration (short focal length $F=40$ cm) is for overdense laser–matter interaction where VEGA 2 is focused onto a $5~\unicode[STIX]{x03BC}\text{m}$ thick Al target generating a proton beam with a maximum energy of 10 MeV and temperature of 2.5 MeV. In this paper we present preliminary experimental results.

High Power Laser Science and Engineering
Apr. 26, 2019, Vol. 7 Issue 2 02000e25 (2019)
Innovative Education and Training in high power laser plasmas (PowerLaPs) for plasma physics, high power laser–matter interactions and high energy density physics – theory and experiments
John Pasley, Georgia Andrianaki, Andreas Baroutsos, Dimitri Batani, Emmanouil P. Benis, Marco Borghesi, Eugene Clark, Donna Cook, Emmanuel D’Humieres, Vasilios Dimitriou, Brendan Dromey, Michael Ehret, Ioannis Fitilis, Anastasios Grigoriadis, Satya Kar, Evaggelos Kaselouris, Ondrej Klimo, Michel Koenig, Kyriaki Kosma, George Koundourakis, Milan Kucharik, Aveen Lavery, Jiri Limpouch, Yannis Orphanos, Nektarios A. Papadogiannis, Stelios Petrakis, Dave Riley, Maria Serena Rivetta, Laura Tejada Pascual, João Jorge Santos, Alexandros Skoulakis, Ioannis Tazes, Vladimir Tikhonchuk, Jocelain Trela, Calliope Tsitou, Luca Volpe, Steven White, Mark Yeung, and Michael Tatarakis

The Erasmus Plus programme ‘Innovative Education and Training in high power laser plasmas’, otherwise known as PowerLaPs, is described. The PowerLaPs programme employs an innovative paradigm in that it is a multi-centre programme where teaching takes place in five separate institutes with a range of different aims and styles of delivery. The ‘in class’ time is limited to four weeks a year, and the programme spans two years. PowerLaPs aims to train students from across Europe in theoretical, applied and laboratory skills relevant to the pursuit of research in laser–plasma interaction physics and inertial confinement fusion (ICF). Lectures are intermingled with laboratory sessions and continuous assessment activities. The programme, which is led by workers from the Technological Educational Institute (TEI) of Crete, and supported by co-workers from the Queen’s University Belfast, the University of Bordeaux, the Czech Technical University in Prague, Ecole Polytechnique, the University of Ioannina, the University of Salamanca and the University of York, has just completed its first year. Thus far three Learning Teaching Training (LTT) activities have been held, at the Queen’s University Belfast, the University of Bordeaux and the Centre for Plasma Physics and Lasers (CPPL) of TEI Crete. The last of these was a two-week long Intensive Programme (IP), while the activities at the other two universities were each five days in length. Thus far work has concentrated upon training in both theoretical and experimental work in plasma physics, high power laser–matter interactions and high energy density physics. The nature of the programme will be described in detail and some metrics relating to the activities carried out to date will be presented.

High Power Laser Science and Engineering
Apr. 25, 2019, Vol. 7 Issue 2 02000e23 (2019)
Analysis on FM-to-AM conversion of SSD beam induced by etalon effect in a high-power laser system
Ping Li, Wei Wang, Jingqin Su, and Xiaofeng Wei

FM-to-AM (frequency modulation-to-amplitude modulation) conversion caused by nonuniform spectral transmission of broadband beam is harmful to high-power laser facility. Smoothing by spectral dispersion (SSD) beam is a special broadband beam for its monochromatic feature at the given time and space on the near field. The traditional method which uses the optical spectral transfer function as filters cannot accurately describe its AM characteristics. This paper presents the theoretical analysis of the etalon effect for SSD beam. With a low-order approximation, the analytic model of the temporal shape of SSD beam is obtained for the first time, which gives the detailed AM characteristics at local and integral aspects, such as the variation of ripples width and amplitude in general situation. We also analyze the FM-to-AM conversion on the focal plane; in the focusing process, the lens simply acts as an integrator to smooth the AM of SSD beam. Because AM control is necessary for the near field to avoid optics damage and for the far field to ensure an optimal interaction of laser–target, our investigations could provide some important phenomena and rules for pulse shape control.

High Power Laser Science and Engineering
Apr. 08, 2019, Vol. 7 Issue 2 02000e21 (2019)
Absolute instability modes due to rescattering of stimulated Raman scattering in a large nonuniform plasma
Yao Zhao, Zhengming Sheng, Suming Weng, Shengzhe Ji, and Jianqiang Zhu

Absolute instability modes due to secondary scattering of stimulated Raman scattering (SRS) in a large nonuniform plasma are studied theoretically and numerically. The backscattered light of convective SRS can be considered as a pump light with a finite bandwidth. The different frequency components of the backscattered light can be coupled to develop absolute SRS instability near their quarter-critical densities via rescattering process. The absolute SRS mode develops a Langmuir wave with a high phase velocity of about $c/\sqrt{3}$ with $c$ the light speed in vacuum. Given that most electrons are at low velocities in the linear stage, the absolute SRS mode grows with very weak Landau damping. When the interaction evolves into the nonlinear regime, the Langmuir wave can heat abundant electrons up to a few hundred keV via the SRS rescattering. Our theoretical model is validated by particle-in-cell simulations. The absolute instabilities may play a considerable role in the experiments of inertial confinement fusion.

High Power Laser Science and Engineering
Mar. 28, 2019, Vol. 7 Issue 1 01000e20 (2019)
Mitigation of stimulated Raman scattering in kilowatt-level diode-pumped fiber amplifiers with chirped and tilted fiber Bragg gratings
Meng Wang, Le Liu, Zefeng Wang, Xiaoming Xi, and Xiaojun Xu

The average power of diode-pumped fiber lasers has been developed deeply into the kW regime in the past years. However, stimulated Raman scattering (SRS) is still a major factor limiting the further power scaling. Here, we have demonstrated the mitigation of SRS in kilowatt-level diode-pumped fiber amplifiers using a chirped and tilted fiber Bragg grating (CTFBG) for the first time. The CTFBG is designed and inscribed in large-mode-area (LMA) fibers, matching with the operating wavelength of the fiber amplifier. With the CTFBG inserted between the seed laser and the amplifier stage, an SRS suppression ratio of ${\sim}10~\text{dB}$ is achieved in spectrum at the maximum output laser power of 2.35 kW, and there is no reduction in laser slope efficiency and degradation in beam quality. This work proves the feasibility and practicability of CTFBGs for SRS suppression in high-power fiber lasers, which is very useful for the further power scaling.

High Power Laser Science and Engineering
Mar. 18, 2019, Vol. 7 Issue 1 01000e18 (2019)
Accurate reconstruction of electric field of ultrashort laser pulse with complete two-step phase-shifting
Yi Cai, Zhenkuan Chen, Shuiqin Zheng, Qinggang Lin, Xuanke Zeng, Ying Li, Jingzhen Li, and Shixiang Xu

This paper presents a complete two-step phase-shifting (TSPS) spectral phase interferometry for direct electric-field reconstruction (SPIDER) to improve the reconstruction of ultrafast optical fields. Here, complete TSPS acts as a balanced detection that can not only remove the effect of the dc term of the interferogram, but also reduce measurement noises, and thereby improve the capability of SPIDER to measure the pulses with narrow spectra or complex spectral structures. Some prisms are chosen to replace some environment-sensitive optical components, especially reflective optics to improve operating stability and improve signal-to-noise ratio further. Our experiments show that the available shear can be decreased to 1.5% of the spectral width, which is only about $1/3$ compared with traditional SPIDER.

High Power Laser Science and Engineering
Mar. 11, 2019, Vol. 7 Issue 1 01000e13 (2019)
High efficiency second harmonic generation of nanojoule-level femtosecond pulses in the visible based on BiBO
Mario Galletti, Hugo Pires, Victor Hariton, Celso Paiva João, Swen Künzel, Marco Galimberti, and Gonçalo Figueira

We demonstrate high efficiency second harmonic generation (SHG) of near infrared femtosecond pulses using a $\text{BiB}_{3}\text{O}_{6}$ crystal in a single-pass tight focusing geometry setup. A frequency doubling efficiency of $63\%$ is achieved, which is, to the best of our knowledge, the highest value ever reported in the femtosecond regime for such low energy (nJ-level) pumping pulses. Theoretical analyses of the pumping scheme focusing waist and the SHG efficiency are performed, by numerically solving the three wave mixing coupled equations in the plane-wave scenario and by running simulations with a commercial full 3D code. Simulations show a good agreement with the experimental data regarding both the efficiency and the pulse spectral profile. The simulated SHG pulse temporal profile presents the characteristic features of the group velocity mismatch broadening in a ‘thick’ crystal.

High Power Laser Science and Engineering
Feb. 14, 2019, Vol. 7 Issue 1 01000e11 (2019)
Cumulative material damage from train of ultrafast infrared laser pulses
A. Hanuka, K. P. Wootton, Z. Wu, K. Soong, I. V. Makasyuk, R. J. England, and L. Schächter

We developed a systematic experimental method to demonstrate that damage threshold fluence (DTF) for fused silica changes with the number of femtosecond laser (800 nm, $65\pm 5~\text{fs}$, 10 Hz and 600 Hz) pulses. Based on the experimental data, we were able to develop a model which indicates that the change in DTF varies with the number of shots logarithmically up to a critical value. Above this value, DTF approaches an asymptotic value. Both DTF for a single shot and the asymptotic value as well as the critical value where this happens, are extrinsic parameters dependent on the configuration (repetition rate, pressure and geometry near or at the surface). These measurements indicate that the power of this dependence is an intrinsic parameter independent of the configuration.

High Power Laser Science and Engineering
Feb. 06, 2019, Vol. 7 Issue 1 010000e7 (2019)
Dual-wavelength bidirectional pumped high-power Raman fiber laser
Zehui Wang, Qirong Xiao, Yusheng Huang, Jiading Tian, Dan Li, Ping Yan, and Mali Gong

In this paper, we reported both the experimental demonstration and theoretical analysis of a Raman fiber laser based on a master oscillator–power amplifier configuration. The Raman fiber laser adopted the dual-wavelength bidirectional pumping configuration, utilizing 976 nm laser diodes and 1018 nm fiber lasers as the pump sources. A 60-m-long $25/400~\unicode[STIX]{x03BC}\text{m}$ ytterbium-doped fiber was used to convert the power from 1070 to 1124 nm, realizing a maximum power output of 3.7 kW with a 3 dB spectral width of 6.8 nm. Moreover, we developed a multi-frequency model taking into consideration the Raman gain spectrum and amplified spontaneous emission. The calculated spectral broadening of both the forward and backward laser was in good agreement with the experimental results. Finally, a 1.5 kW, 1183 nm second-order Raman fiber laser was further experimentally demonstrated by the addition of a 70-m-long germanium-doped passive fiber.

High Power Laser Science and Engineering
Jan. 26, 2019, Vol. 7 Issue 1 010000e5 (2019)
Dispersion effects on performance of free-electron laser based on laser wakefield accelerator
Ke Feng, Changhai Yu, Jiansheng Liu, Wentao Wang, Zhijun Zhang, Rong Qi, Ming Fang, Jiaqi Liu, Zhiyong Qin, Ying Wu, Yu Chen, Lintong Ke, Cheng Wang, and Ruxin Li

In this study, we investigate a new simple scheme using a planar undulator (PU) together with a properly dispersed electron beam (beam) with a large energy spread () to enhance the free-electron laser (FEL) gain. For a dispersedbeam in a PU, the resonant condition is satisfied for the center electrons, while the frequency detuning increases for the off-center electrons, inhibiting the growth of the radiation. The PU can act as a filter for selecting the electrons near the beam center to achieve the radiation. Although only the center electrons contribute, the radiation can be enhanced significantly owing to the high-peak current of the beam. Theoretical analysis and simulation results indicate that this method can be used for the improvement of the radiation performance, which has great significance for short-wavelength FEL applications.

High Power Laser Science and Engineering
Dec. 19, 2018, Vol. 6 Issue 4 04000e64 (2018)
All-optical acceleration in the laser wakefield
F. Zhang, Z. G. Deng, L. Q. Shan, Z. M. Zhang, B. Bi, D. X. Liu, W. W. Wang, Z. Q. Yuan, C. Tian, S. Q. Yang, B. Zhang, and Y. Q. Gu

Muons produced by the Bethe–Heitler process from laser wakefield accelerated electrons interacting with highmaterials have velocities close to the laser wakefield. It is possible to accelerate those muons with laser wakefield directly. Therefore for the first time we propose an all-optical ‘Generator and Booster’ scheme to accelerate the produced muons by another laser wakefield to supply a prompt, compact, low cost and controllable muon source in laser laboratories. The trapping and acceleration of muons are analyzed by one-dimensional analytic model and verified by two-dimensional particle-in-cell (PIC) simulation. It is shown that muons can be trapped in a broad energy range and accelerated to higher energy than that of electrons for longer dephasing length. We further extrapolate the dependence of the maximum acceleration energy of muons with the laser wakefield relativistic factorand the relevant initial energy. It is shown that a maximum energy up to 15.2 GeV is promising withandon the existing short pulse laser facilities.

High Power Laser Science and Engineering
Dec. 19, 2018, Vol. 6 Issue 4 04000e63 (2018)
Optimization of the pulse width and injection time in a double-pass laser amplifier
Daewoong Park, Jihoon Jeong, and Tae Jun Yu

We have optimized the input pulse width and injection time to achieve the highest possible output pulse energy in a double-pass laser amplifier using two Nd:YAG rods. For this purpose, we have extended the Frantz–Nodvik equation by simultaneously including both spontaneous emission and pump energy variation. The effective pump energy of the flash lamp was 8.84 J for each gain medium. The energy of 1 J could be amplified to an output energy of 12.17 J with the maximum achieved extraction efficiency of 63.18% when an input pulse having a pulse width of 168 s is sent 10 s after the absorbed pump energy becomes the maximum value.

High Power Laser Science and Engineering
Dec. 18, 2018, Vol. 6 Issue 4 04000e60 (2018)
High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression
Pengfei Ma, Hu Xiao, Daren Meng, Wei Liu, Rumao Tao, Jinyong Leng, Yanxing Ma, Rongtao Su, Pu Zhou, and Zejin Liu

An all-fiberized and narrow-bandwidth master oscillator power amplification (MOPA) system with record output power of 4 kW level and slope efficiency of 78% is demonstrated. Tandem pumping strategy is tentatively introduced into the narrow-bandwidth MOPA system for thermally induced mode instability (TMI) suppression. The stimulated Brillouin scattering (SBS) effect is balanced by simply using one-stage phase modulation technique. With different phase modulation signals, SBS limited output powers of 336 W, 1.2 kW and 3.94 kW are respectively achieved with spectral bandwidths accounting for 90% power of ${\sim}$ 0.025, 0.17 and ${\sim}$ 0.89 nm. Compared with our previous 976 nm pumping system, TMI threshold is overall boosted to be ${>}$ 5 times in which tandem pumping increases the TMI threshold of ${>}$ 3 times. The beam quality ( $M^{2}$ factor) of the output laser is well within 1.5 below the TMI threshold while it is ultimately saturated to be 1.86 with the influence of TMI at maximal output power. Except for SBS and TMI, stimulated Raman scattering (SRS) effect will be another challenge for further power scaling. In such a high power MOPA system, multi-detrimental effects (SBS, SRS and TMI) will coexist and may be mutual-coupled, which could provide a well platform for further comprehensively investigating and optimizing the high power, narrow-bandwidth fiber amplifiers.

High Power Laser Science and Engineering
Nov. 16, 2018, Vol. 6 Issue 4 04000e57 (2018)
Loss mechanism of all-fiber cascaded side pumping combiner
Chengmin Lei, Zilun Chen, Yanran Gu, Hu Xiao, and Jing Hou

Compared with end pumping fiber combiner, one of the advantages for side pumping combiner is the unlimited pumping points, which means multi-point or cascaded side pumping can be realized. However, the loss mechanism of the cascaded structure is rarely discussed. In this paper, we present the numerical and experimental investigation about the loss mechanism of a two-stage-cascaded side pumping combiner based on tapered-fused technique. The influence of loss mechanism on the coupling efficiency and thermal load of the fiber coating is analyzed according to simulations and experiments with different tapering ratios for the first stage. Based on the analysis, a cascaded component with total pump coupling efficiency of 96.4% handling a pump power of 1088 W is achieved by employing 1018 nm fiber laser as the pump source. Future work to further improve the performance of a cascaded side pumping combiner is discussed and prospected.

High Power Laser Science and Engineering
Nov. 16, 2018, Vol. 6 Issue 4 04000e56 (2018)
Suppression of amplitude modulation induced by polarization mode dispersion using a multi-degree-of-freedom fiber filter
Rao Li, Youen Jiang, Zhi Qiao, Canhong Huang, Wei Fan, Xuechun Li, and Zunqi Lin

Polarization mode dispersion (PMD) in fibers for high-power lasers can induce significant frequency modulation to amplitude modulation (FM-to-AM) conversion. However, existing techniques are not sufficiently flexible to achieve efficient compensation for such FM-to-AM conversion. By analyzing the nonuniform transmission spectrum caused by PMD, we found that the large-scale envelope of the transmission spectrum has more serious impacts on the amount of AM. In order to suppress the PMD-induced FM-to-AM conversion, we propose a novel tunable spectral filter with multiple degrees of freedom based on a half-wave plate, a nematic liquid crystal, and an axis-rotated polarization-maintaining fiber. Peak wavelength, free spectral range (FSR), and modulation depth of the filter are decoupled and can be controlled independently, which is verified through both simulations and experiments. The filter is utilized to compensate for the PMD-induced FM-to-AM conversion in the front end of a high-power laser facility. The results indicate that, for a pulse with phase-modulation frequency of 22.82 GHz, the FM-to-AM conversion could be reduced from 18% to 3.2% within a short time and maintained below 6.5% for 3 h. The proposed filter is also promising for other applications that require flexible spectral control such as high-speed channel selection in optical communication networks.

High Power Laser Science and Engineering
Oct. 23, 2018, Vol. 6 Issue 4 04000e53 (2018)
Direct prejudgement of hot images with detected diffraction rings in high power laser system
Aihua Yang, Zhan Li, Dean Liu, Jie Miao, and Jianqiang Zhu

A direct prejudgement strategy that takes the diffraction ring as the analysis target is put forward to predict hot images induced by defects of tens of microns in the main amplifier section of high power laser systems. Analysis of hot-image formation process shows that the hot image can be precisely calculated with the extracted intensity oscillation of the diffraction ring on the front surface of the nonlinear plate. The gradient direction matching (GDM) method is adopted to detect diffraction rings. Recognition of simulated diffraction rings shows that it is feasible to directly prejudge hot images induced by those closely spaced defects and the defects that are far apart from each other. Image compression and cluster analysis are utilized to optimize the performance of the GDM method in recognizing actually collected diffraction images. Results show that hot images induced by defects of tens of microns can be directly prejudged without redundant information.

High Power Laser Science and Engineering
Sep. 12, 2018, Vol. 6 Issue 3 03000e52 (2018)
In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality
Jiangming Xu, Jun Ye, Hu Xiao, Jinyong Leng, Wei Liu, and Pu Zhou

High power superfluorescent fiber sources (SFSs), which could find wide applications in many fields such as middle infrared laser generation, Raman fiber laser pumping and spectral beam combination, have experienced a flourishing time in recent years for its unique properties, such as short coherence length and high temporal stability. The challenge for performance scalability of powerful SFS mainly lies on the physical issues including parasitic laser oscillation and modal instability (MI). In this contribution, by employing in-band pumping avenue and high-order transverse-mode management, we explore a high power SFS with record power, near-diffraction-limited beam quality and spectral manipulation flexibility. An ultimate output power of 3.14 kW can be obtained with high temporal stability and a beam quality of for the amplified light. Furthermore, the dynamics of spectral evolutions, including red-shifting of central wavelength and unsymmetrical broadening in spectral wings, of the main amplifier with different seed linewidths are investigated contrastively. Benefiting from the unique high pump brightness and high MI threshold of in-band pumping scheme, the demonstrated system also manifests promising performance scaling potential.

High Power Laser Science and Engineering
Aug. 15, 2018, Vol. 6 Issue 3 03000e46 (2018)
Variation of the band structure in DKDP crystal excited by intense sub-picosecond laser pulses
Xiaocong Peng, Yuanan Zhao, Yueliang Wang, Zhen Cao, Guohang Hu, and Jianda Shao

The nonlinear absorption (NLA) properties of potassium dideuterium phosphate crystals at 515 nm under different excitation laser intensities are investigated with the Z-scan technique. Two critical intensities are highlighted: the critical intensity for exciting the NLA and the critical intensity of the multiphoton absorption mechanism transition. Experimental results indicate the existence of defect states located in the band gap, which can be manipulated by varying laser intensity. A model based on the change of multiphoton absorption mechanism induced by the transformation of defect species is proposed to interpret the experiments. Modeling results are in good agreement with the experiment data.

High Power Laser Science and Engineering
Jul. 09, 2018, Vol. 6 Issue 3 03000e41 (2018)
Corrosion behaviors of the copper alloy electrodes in ArF excimer laser operation process
Xin Guo, Jinbin Ding, Yi Zhou, and Yu Wang

The corrosion behaviors of the ArF excimer laser copper alloy electrodes were studied. The morphology, composition and impurities were characterized by optical microscope, scanning electron microscopy, electron microprobe and glow discharge mass spectrometer methods. The anode produces the reef, the corrosion pits, the hole layer and the $1{-}10~\unicode[STIX]{x03BC}\text{m}$ level flake impurity. The cathode produces the particles, the sputtering pits, the element reduce layer and the $1~\unicode[STIX]{x03BC}\text{m}$ level particle impurity. Besides the Cu element, other elements in the alloy participate in the corrosion: Al element in the reef is over 1.5 times of the anode, Zn element in the particles is 1.3 times of the cathode, many trace elements congregate on the copper surface several and even hundreds of times. These elements are responsible to a great degree for the impurities and the rapid energy decline of the long-time idled laser.

High Power Laser Science and Engineering
Mar. 19, 2018, Vol. 6 Issue 1 010000e9 (2018)
Femtosecond laser-induced damage threshold in snow micro-structured targets
O. Shavit, Y. Ferber, J. Papeer, E. Schleifer, M. Botton, A. Zigler, and Z. Henis

Enhanced acceleration of protons to high energy by relatively modest high power ultra-short laser pulses, interacting with snow micro-structured targets was recently proposed. A notably increased proton energy was attributed to a combination of several mechanisms such as localized enhancement of the laser field intensity near the tip of $1~\unicode[STIX]{x03BC}\text{m}$ size whisker and increase in the hot electron concentration near the tip. Moreover, the use of mass-limited target prevents undesirable spread of absorbed laser energy out of the interaction zone. With increasing laser intensity a Coulomb explosion of the positively charged whisker will occur. All these mechanisms are functions of the local density profile and strongly depend on the laser pre-pulse structure. To clarify the effect of the pre-pulse on the state of the snow micro-structured target at the time of interaction with the main pulse, we measured the optical damage threshold (ODT) of the snow targets. ODT of $0.4~\text{J}/\text{cm}^{2}$ was measured by irradiating snow micro-structured targets with 50 fs duration pulses of Ti:Sapphire laser.

High Power Laser Science and Engineering
Mar. 19, 2018, Vol. 6 Issue 1 010000e7 (2018)
Pulsed LD side-pumped MgO: LN electro-optic cavity-dumped 1123 nm Nd: YAG laser with short pulse width and high peak power
Yang Bai, Bing Bai, Diao Li, Yanxiao Sun, Jianlin Li, Lei Hou, Mingxuan Hu, and Jintao Bai

We report a cavity-dumped 1123 nm laser with narrow pulse width and high peak power by an MgO: LN crystal electro-optic (EO) modulator. Based on the structural optimization design of a folded biconcave cavity using the 808 nm pulsed laser diode (LD) side-pumped ceramic Nd: YAG rod, output pulses with maximum pulse energy and peak power up to 39.6 mJ and 9.73 MW were obtained, corresponding to 100 Hz repetition rate and 4.07 ns pulse width. The instabilities of pulse width and pulse energy were $\pm$1.55% and $\pm$2.06%, respectively. At the highest repetition rate of 1 kHz, the pulse energy, pulse width, and peak power were 11.3 mJ, 5.05 ns, and 2.24 MW, respectively. The instabilities of pulse width and pulse energy were $\pm$2.65% and $\pm$3.47%, respectively.

High Power Laser Science and Engineering
Feb. 08, 2018, Vol. 6 Issue 1 010000e4 (2018)
Performance of an elliptical crystal spectrometer for SGII X-ray opacity experiments
Ruirong Wang, Honghai An, Zhiyong Xie, and Wei Wang

A new crystal spectrometer for application in X-ray opacity experiments is proposed. The conditions necessary to yield broad spectral coverage with a resolution ${>}$500, strong rejection of hard X-ray backgrounds and negligible source broadening for extended sources are formulated. In addition, the design, response modeling and reporting of an elliptical crystal spectrometer in conjunction with a linear detector are presented. The measured results demonstrate the performance of the new crystal spectrometer with a broad energy coverage range, high spectral resolution, and high luminosity (good collection efficiency). This spectrometer can be used in combination with point-projection backlighting techniques as utilized in X-ray opacity experiments. Specifically, the X-ray source, transmission and self-emission spectra of the sample can be measured simultaneously in a single shot, which can reduce the experimental uncertainties from shot-to-shot fluctuations. The new crystal spectrometer has been used in the X-ray opacity experiment to precisely measure the aluminum $K$-absorption edge shift in the energy range around 1.560 keV in strongly compressed matter. It is demonstrated that the spectrometer can be used to realize measurements of new and unpredictable physical interactions of interest, as well as basic and applied high-energy-density science.

High Power Laser Science and Engineering
Jan. 01, 1900, Vol. 6 Issue 1 010000e3 (2018)
Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials
David Vojna, Ryo Yasuhara, Hiroaki Furuse, Ondrej Slezak, Simon Hutchinson, Antonio Lucianetti, Tomas Mocek, and Miroslav Cech

Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials, highly potential material candidates for high-energy laser Faraday isolators, are presented in this paper. Temperature dependence of the Verdet constant of nondoped Ho2O3 ceramics was measured for temperatures 15–305 K at $1.064~\unicode[STIX]{x03BC}\text{m}$ wavelength. The Verdet constant dispersion for wavelengths 0.5–$1~\unicode[STIX]{x03BC}\text{m}$ and $1.064~\unicode[STIX]{x03BC}\text{m}$ was measured for both nondoped Ho2O3 ceramics and Ho2O3 ceramics doped with terbium Tb3+ (0.2 at. %) and cerium Ce3+ (0.1 at. %) ions. The results suggest that the relatively low level of doping of Ho2O3 with these ions has no significant boosting impact on the Faraday effect. Therefore, other compositions of Ho2O3 ceramics-based magneto-optical materials, as well as various doping concentrations, should be further examined.

High Power Laser Science and Engineering
Jan. 25, 2018, Vol. 6 Issue 1 010000e2 (2018)
kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme
Man Jiang, Pengfei Ma, Long Huang, Jiangming Xu, Pu Zhou, and Xijia Gu

In this manuscript, we demonstrate high-power, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme. By employing a single-mode–multimode–single-mode structure seed laser, a linearly polarized Yb-doped fiber laser with narrow linewidth and high output power is achieved. This laser, when used as a master oscillator, can be capable of suppressing the ASE in the process of power amplification. Thus, only one-stage amplification structure is used to scale up the laser power, and linearly polarized output with a polarization extinction ration of 14 dB, a narrow linewidth of 0.3 nm and an output power of 1018 W are achieved. Moreover, due to the good beam quality of seed laser and the well-designed amplifier stage, the beam quality of the output laser is near-diffraction-limited with $M_{x}^{2}\sim 1.18$ and $M_{y}^{2}\sim 1.24$ at the maximum power, and without mode instability occurring.

High Power Laser Science and Engineering
Dec. 12, 2017, Vol. 5 Issue 4 04000e30 (2017)
The special shaped laser spot for driving indirect-drive hohlraum with multi-beam incidence
Ping Li, Sai Jin, Runchang Zhao, Wei Wang, Fuquan Li, Mingzhong Li, Jingqin Su, and Xiaofeng Wei

In indirect drive, reducing peak intensity of a single beam and controlling overlap of multi-beams are two opposite requirements for laser focal spot design. In this paper, an improved laser spot design technique for indirect drive built upon the geometric structures of laser propagation into hohlraum has been introduced. The proposed technique is able to generate appropriate continuous phase plate (CPP) producing a special shaped spot that can balance the opposite requirements. The corresponding CPP does not bring difficulties to the design and fabrication. Phase aberrations are more sensitive to the special shaped spot; however, it can be tolerable for the current beam control level.

High Power Laser Science and Engineering
Aug. 30, 2017, Vol. 5 Issue 3 03000e20 (2017)
A new method on diagnostics of muons produced by a short pulse laser
Feng Zhang, Boyuan Li, Lianqiang Shan, Bo Zhang, Wei Hong, and Yuqiu Gu

Muons produced by a short pulse laser can serve as a new type of muon source having potential advantages of high intensity, small source emittance, short pulse duration and low cost. To validate it in experiments, a suitable muon diagnostics system is needed since high muon flux generated by a short pulse laser shot is always accompanied by high radiation background, which is quite different from cases in general muon researches. A detection system is proposed to distinguish muon signals from radiation background by measuring the muon lifetime. It is based on the scintillator detector with water and lead shields, in which water is used to adjust energies of muons stopped in the scintillator and lead to against radiation background. A Geant4 simulation on the performance of the detection system shows that efficiency up to 52% could be arrived for low-energy muons around 200 MeV and this efficiency decreases to 14% for high-energy muons above 1000 MeV. The simulation also shows that the muon lifetime can be derived properly by measuring attenuation of the scintilla light of electrons from muon decays inside the scintillator detector.

High Power Laser Science and Engineering
Jul. 24, 2017, Vol. 5 Issue 3 03000e16 (2017)
Upper-limit power for self-guided propagation of intense lasers in underdense plasma – CORRIGENDUM
Wei-Min Wang, Zheng-Ming Sheng, Yu-Tong Li, and Jie Zhang

doi:10.1017/hpl.2013.12. Published online by Cambridge University press 29 August 2013

High Power Laser Science and Engineering
Dec. 20, 2013, Vol. 1 Issue 3-4 3-43-4000148 (2013)
Novel transparent ceramics for solid-state lasers
Hao Yang, Jian Zhang, Dewei Luo, Hui Lin, Deyuan Shen, and Dingyuan Tang

Recent progress on rare-earth doped polycrystalline YAG transparent ceramics has made them an alternative novel solid-state laser gain material. In this paper we present results of our research on polycrystalline RE:YAG transparent ceramics. High optical quality YAG ceramics doped with various rare-earth (RE) ions such as ${\rm Nd}^{3+}$, ${\rm Yb}^{3+}$, ${\rm Er}^{3+}$, ${\rm Tm}^{3+}$, and ${\rm Ho}^{3+}$ have been successfully fabricated using the solid-state reactive sintering method. Highly efficient laser oscillations of the fabricated ceramics are demonstrated.

High Power Laser Science and Engineering
Dec. 20, 2013, Vol. 1 Issue 3-4 3-43-4000138 (2013)
Propagation characteristics of a high-power broadband laser beam passing through a nonlinear optical medium with defects
Xueqiong Chen, Xiaoyan Li, Ziyang Chen, Jixiong Pu, Guowen Zhang, and Jianqiang Zhu

The intensity distributions of a high-power broadband laser beam passing through a nonlinear optical medium with defects and then propagating in free space are investigated based on the general nonlinear Schr?dinger equation and the split-step Fourier numerical method. The influences of the bandwidth of the laser beam, the thickness of the medium, and the defects on the light intensity distribution are revealed. We find that the nonlinear optical effect can be suppressed and that the uniformity of the beam can be improved for a high-power broadband laser beam with appropriate wide bandwidth. It is also found that, under the same incident light intensity, a thicker medium will lead to a stronger self-focusing intensity, and that the influence of defects in the optical elements on the intensity is stronger for a narrowband beam than for a broadband beam.

High Power Laser Science and Engineering
Dec. 20, 2013, Vol. 1 Issue 3-4 3-43-4000132 (2013)
Energy measurement system of a large-aperture high power laser experiment platform
Yanwen Xia, Yue Liang, Sen Li, Junpu Zhao, Zhitao Peng, Hongguang Li, Hua Liu, Zhihong Sun, Kuixing Zheng, and Xiaofeng Wei

An energy measurement system in a Large-aperture high power laser experiment platform is introduced. The entire measurement system includes five calorimeters, which carry out the energy measurement of the fundamental frequency before the frequency conversion unit, remaining fundamental frequency, remain second-harmonics, third harmonics, as well as the energy balance measurement after the frequency conversion unit. Combinational indirect calibration and direct calibration are employed to calibrate the sampling coefficients of the calorimeters. The analysis of the data showed that, regarding the energy balance coefficients, combinational calibration approach gives a higher precision, and leads to an energy balance with 1%; and regarding the energy sampling coefficients for the various wavelengths after the frequency conversion, the results from direct and combinational calibration are consistent. The uncertainties for all energy sampling coefficients are within 3%, which guarantees the reliability of the energy measurement for the laser facility.

High Power Laser Science and Engineering
Dec. 20, 2013, Vol. 1 Issue 3-4 3-43-4000126 (2013)
51.5 W monolithic single frequency 1.97 μm Tm-doped fiber amplifier
Xiong Wang, Pu Zhou, Xiaolin Wang, Hu Xiao, and Lei Si

We demonstrate a monolithic single frequency Tm-doped fiber amplifier with output power of 51.5 W. A single frequency fiber laser at 1.97 $\mathrm {\mu} $m is amplified by a cascaded master oscillator power amplifier (MOPA) system with all-fiber configuration. The optical-to-optical conversion efficiency of the main fiber amplifier is 45%. No amplified spontaneous emission (ASE) or stimulated Brillouin scattering (SBS) effect is observed in the fiber amplifier. The output power could be further scaled by launching more pump power.

High Power Laser Science and Engineering
Dec. 20, 2013, Vol. 1 Issue 3-4 3-43-4000123 (2013)
An important effect of filamentation instability on laser fusion physical processes
Zunqi Lin, Anle Lei, Wei Fan, Shenlei Zhou, and Li Wang

The process of high power laser interaction with the large scale length corona plasma produced by the leading edge of the laser pulse has been investigated. Early experimental results are re-analyzed and conclusions drawn. In particular, studies of the close connection of unstable filamentation instability with – mainly – two-plasmon decay and – partly – stimulated Raman scattering, stimulated Brillouin scattering, and resonance absorption are carried out in this paper. The positive and negative effects of filamentation instability are also discussed.

High Power Laser Science and Engineering
Dec. 20, 2013, Vol. 1 Issue 3-4 3-43-4000110 (2013)
Inertial confinement fusion driven by long wavelength electromagnetic pulses
Baifei Shen, Xueyan Zhao, Longqing Yi, Wei Yu, and Zhizhan Xu

A method for inertial confinement fusion driven by powerful long wavelength electromagnetic pulses (EMPs), such as ${\rm CO}_{2}$ laser pulses or high power microwave pulses, is proposed. Due to the high efficiency of generating such long wavelength electromagnetic pulses, this method is especially important for the future fusion electricity power Special fuel targets are designed to overcome the shortcomings of the long wavelength electromagnetic pulses.

High Power Laser Science and Engineering
Dec. 20, 2013, Vol. 1 Issue 3-4 3-43-4000105 (2013)
Please enter the answer below before you can view the full text.
8+6=
Submit